Straight Line

<u>Formulae</u>

1. Slope (Gradient) of a line:

6

The trigonometrical tangent of the angle that a line makes with the positive direction of the X-axis in anticlockwise sense is called the slope or gradient of the line. The slope of a line is generally denoted by m. Thus, $m = \tan \theta$.

- i. Slope of line parallel to X axis is
- ii. Slope of line parallel to Y axis is $m = \tan 90^0 = \infty$.
- iii. Slope of the line passing through the points

$$(x_1, y_1)$$
 and (x_2, y_2) is $\frac{y_2 - y_1}{x_2 - x_1}$, $x_1 \neq x_2$

- iv. Slope of the line ax + by + c = 0, $b \neq 0$ is a $-\frac{a}{b}$
- v. If m_1 and m_2 be the slopes of two perpendicular lines, then $m_1m_2 = -1$.
- 2. Equation of straight line in standard forms:
 - i. Slope intercept form: The equation of a line with slope 'm' and making an intercept on Y axis is y = mx + c
 - ii. Slope point form: The equation of a line which passes through the point (x_1, y_1) and has slope 'm' is $y - y_1 = m (x - x_1)$
 - iii. Two point form: The equation of a line passing through two points (x_1, y_1) and

$$(x_2, y_2)$$
 is $\frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2}$

iv. Double - intercept form: The equation of a line which cuts off intercepts a and b from

the X and Y - axis is $\frac{x}{a} + \frac{y}{b} = 1$

MATHEMATICS - XI OBJECTIVE

- v. Normal form: The equation of a straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle a with X – axis is x $\cos \alpha + y \sin \alpha = p$
- vi. Parametric form: The equation of the straight line passing through (x_1, y_1) and making an angle θ with the positive direction
 - of X axis is $\frac{x x_1}{\cos \theta} = \frac{y y_1}{\sin \theta} = r$, where r is the distance of the point (x, y) on the line from the point (x₁,y₁).
- 3. General equation of a straight line and its transformation in standard forms:
 - General form of equation of a line is

$$ax + by + c = 0$$
, its

7 Slope intercept form:
$$y = -\frac{a}{b}x - \frac{c}{b}$$
,

slope
$$m = -\frac{a}{b}$$
 and intercept on Y-axis is

b
Intercept form :
$$\frac{x}{-c/a} + \frac{y}{-c/b} = 1$$
,

x intercept
$$= \left(-\frac{c}{a}\right)$$
 and
y intercept $= \left(-\frac{c}{b}\right)$

iii. Normal form : To change the general form of a line into normal form, first take c to right hand side and make it positive, then divide the whole equation

by
$$\sqrt{a^2 + b^2}$$
 like

$$-\frac{ax}{\sqrt{a^2+b^2}} - \frac{by}{\sqrt{a^2+b^2}} = \frac{c}{\sqrt{a^2+b^2}},$$

where $\cos \alpha = -\frac{a}{\sqrt{a^2+b^2}},$

$$\sin \alpha = -\frac{b}{\sqrt{a^2 + b^2}}, \ p = \frac{c}{\sqrt{a^2 + b^2}}$$

Straight Line

- i. Angle between two intersecting lines:
 - a. If θ is the acute angle between the lines with slopes mi and m₂, then

$$\tan \theta = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2} \right|$$

b. If θ is the acute angle between the lines $a_1x + b_1y + c_1 = 0$ and $+ c_2 = 0$, and $a_2x + b_2y + c_2 = 0$, then

$$\tan \theta = \left| \frac{a_2 b_1 - a_1 b_2}{a_1 a_2 + b_1 b_2} \right|$$

ii. Point of intersection of two lines:

Point of intersection of two lines

$$a_1x + b_1y + c_1 = 0$$
 and $a_2x + b_2y + c_2 = 0$ is

$$(\mathbf{x}', \mathbf{y}') = \left(\frac{\mathbf{b}_{1}\mathbf{c}_{2} - \mathbf{b}_{2}\mathbf{c}_{1}}{\mathbf{a}_{1}\mathbf{b}_{2} - \mathbf{a}_{2}\mathbf{b}_{1}}, \frac{\mathbf{c}_{1}\mathbf{a}_{2} - \mathbf{c}_{2}\mathbf{a}_{1}}{\mathbf{a}_{1}\mathbf{b}_{2} - \mathbf{a}_{2}\mathbf{b}_{1}}\right)$$

5. Concurrent lines:

Three or more lines are said to be concurrent if they meet at a point.

i. If the three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$ are concurrent, then $a_1 (b_2c_3 - b_3c_2) - b_1$ $(a_2c_3 - a_3c_2) + c_1 (a_2b_3 - a_3b_2) = 0$

6. Length of perpendicular:

i. Distance of a point from a line : The length p of the perpendicular from the point (x, y) to the line ax + by + c = 0

C

is given by
$$p = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

Length of perpendicular from origin to the

line
$$ax + by + c = 0$$
 is $\left| \frac{c}{\sqrt{a^2 + b^2}} \right|$

ii. Distance between two parallel lines : The distance between two parallel lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$

is
$$\left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$$

Shortcuts

- 1. Slope of the line equally inclined with the axis is 1 or -1
- 2. Slope of two parallel lines are equal.
- 3. Equation of a line parallel to ax + by + c = 0 is $ax + by + \lambda = 0$, where λ , is a constant.
- 4. Equation of a line perpendicular to ax + by + c = 0is $bx - ay + \lambda$, = 0, where λ , is a constant.
- 5. If the equation of line be a $\sin \theta + b \cos \theta = c$, then line
 - i. **Parallel** to it is a $\sin \theta + b \cos \theta = d$
 - ii. Perpendicular to it is a

$$\sin\left(\frac{\pi}{2} + \theta\right) + b\,\cos\left(\frac{\pi}{2} + \theta\right) = d$$

MATHEMATICS - XI OBJECTIVE

3

MATHEMATICS - XI OBJECTIVE

,

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

Straight Line

 \bigcirc

		Straig	Jht Line	60
16.	The equation of the line wh 2a sec θ and 2a cosec θ respectively is a) x sin θ + y cos θ - 2a = b) x cos θ + y sin θ - 2a =	on X-axis and Y-axis = 0	24. The lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y$ are perpendicular to each other, if a) $a_1b_2 - b_1a_2 = 0$ b) $a_1a_2 + b_1b_2 = 0$	$v_{1} + c_{2} = 0$
17.	c) $x \cos \theta + y \sin \theta - 2a^{2}$ d) $x \csc \theta + y \csc \theta - 2$ d) $x \csc \theta + y \sec \theta - 2$ A straight line makes an a	2a = 0 $2a = 0$	c) $a_1^2b_2 + b_1^2a_2 = 0$ d) $a_1b_1 + a_2b_2 = 0$ 25. The line passing through (1, 0) and ($(-2, \sqrt{3})$
	X-axis and cuts Y-axis at a origin. The equation of the a) $2x + y + 5 = 0$ b) c) $x + y + 5 = 0$ d)	a distance -5 from the e line is x + 2y + 3 = 0	makes an angle of with X-axis. a) 60° b) 120° c) 150° d) 135°	
18.	The equation of line perpe	endicular to $x + c$ is x = d	 6.2 Two intersecting lines and family of 26. The equation of a line through the inters lines x - 0 and y = 0 and through the point is 	ection of
19.	If the line $\frac{x}{a} + \frac{y}{b} = 1$ passe (2, -3) and (4, -5), then a) (1, 1) b) c) (1, -1) d)	(a, b) = (-1, 1)	a) $y = x - 1$ b) $y = -x$ c) $y = x$ d) $y = -x + 2$ 27. For the lines $2x + 5y = 1$ and $2x - 5y = 0$ of the following statement is true? a) Lines are parallel	9, which
20.	The equation of a line p ax + by + c = 0 and pase equal to a) $bx - ay = 0$ b)	perpendicular to line sing through (a, b) is bx + ay - 2ab = 0	 b) Lines are coincident c) Lines are intersecting d) Lines are perpendicular 28. The acute angle between the lines y 	= 3 and
21.	c) $bx + ay = 0$ d) A line passes through (2, 2) to the line $3x + y = 3$. Its y a) $\frac{1}{3}$ b)) and is perpendicular y – intercept is	y = $\sqrt{3}x + 9$ is a) 30° b) 60° c) 45° d) 90° 29. The angle between the lines y = (2- x)	$\sqrt{3}$)x + 5
	c) 1 d)	5	and $y = (2 + \sqrt{3})x - 7$ is a) 30° b) 60° c) 45° d) 90°	
22.	The number of straight line inclined to both the axes is a) 4 b) c) 3 d)	s 2	30. Equations of the two straight lines passing the point (3, 2) and making an angle of the line $x - 2y = 3$, are a) $3x + y + 1 = 0$ and $x + 3y + 9 = 0$	
23.	Let $P(-1, 0)$, $Q(0, 0)$ and points. Then, the equation angle PQR is	n of the bisector of the	b) $3x - y - 7 = 0$ and $x + 3y - 9 = 0$ c) $x + 3y - 1 = 0$ and $x + 3y - 9 = 0$ d) None of these 31. The value of k for which the lines $7x - 8$	$v \pm 5 - 0$
	a) $\frac{\sqrt{3}}{2}x + y = 0$ b) c) $\sqrt{3}x + y = 0$ d)	$x + \sqrt{3}y = 0$ $x + \frac{\sqrt{3}}{2}y = 0$	3x-4y+5=0 and $4x+5y+k=0$ are considered as $3x-4y+5=0$ and $4x+5y+k=0$ are consistent of $4x$	
	.	2	c) 54 d) - 54	

MATHEMATICS - XI OBJECTIVE

	Straig	ht Lin	ne 61
32.	The lines $15x - 18y + 1 = 0$, $12x + 10y - 3 = 0$	39.	The length of the perpendicular from the poin
	and $6x + 66y - 11 = 0$ are		(b, a) to the line $\frac{x}{a} - \frac{y}{b} = 1$ is
	a) Parallel b) Perpendicular		a b
	c) Concurrent d) None of these		$\begin{vmatrix} a^2 - ab + b^2 \end{vmatrix}$ $\begin{vmatrix} b^2 - ab + a^2 \end{vmatrix}$
33.	If $u = a_1 x + b_1 y + c_1 = 0$, $v = a_2 x + b_2 y + c_2 = 0$ a. b. c.		a) $\left \frac{a^2 - ab + b^2}{\sqrt{a^2 + b^2}} \right $ b) $\left \frac{b^2 - ab + a^2}{\sqrt{a^2 + b^2}} \right $
	and $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then the curve $u + kv = 0$ is		c) $\left \frac{a^2 + ab - b^2}{\sqrt{a^2 + b^2}} \right $ d) $\left \frac{a^2 + ab + b^2}{\sqrt{a^2 + b^2}} \right $
	a) same straight line u		$\int \sqrt{a^2 + b^2} = \int \sqrt{a^2 + b^2}$
	b) different straight line	40.	The length of perpendicular drawn from origin
	c) not a straight line		on the line joining (x', y') and (x", y") is
	d) None of these		
34.	The angle between the lines whose intercepts on the axes are $(a, -b)$ and $(b, -a)$ respectively, is		a) $\left \frac{x'y'' + x''y'}{\sqrt{(x'' - x')^2 + (y'' - y')^2}} \right $
	a) $\tan^{-1}\frac{a^2+b^2}{ab}$ b) $\tan^{-1}\frac{b^2-a^2}{2}$		b) $\frac{x'y''-x''y'}{\sqrt{(x''-x')^2+(v''-v')^2}}$
	$b^{-1}b^2 - a^2$ (b) by (c)		$\left \sqrt{(x''-x')^2+(y''-y')^2}\right $
	c) $\tan^{-1}\frac{b^2-a^2}{2ab}$ d) None of these		$\mathbf{v}'\mathbf{v}'' + \mathbf{v}'\mathbf{v}''$
35.	The angle between the lines		c) $\frac{x'y''+y'y''}{\sqrt{(x''+x')^2+(y''+y')^2}}$
	$x \cos 30^{\circ} + y \sin 30^{\circ} = 3$ and $x \cos 60^{\circ} + y \sin 60^{\circ} = 5$	7	$\left \sqrt{(x^{+}+x^{+})^{2}+(y^{+}+y^{+})^{2}}\right $
	is		
	a) 90° b) 30°	D	d) $\frac{x'x''+y'y''}{\sqrt{(x''+x')^2+(y''-y')^2}}$
	c) 60° d) 45°		$\int \sqrt{(x^{n} + x^{n})^{2} + (y^{n} - y^{n})^{2}}$
36.	If the lines $y = m_1 x + c_1$, $y = m_2 x + c_2$ and $y = m_3 x + c_3$, are concurrent, then	41.	The perpendicular distance of the straight line $12x + 5y = 7$ from the origin is
	a) $m_1(c_2 - c_3) + m_2(c_3 - c_1) + m_3(c_1 - c_2) = 0$	_	7 12
	B) $m_1(c_2 - c_1) + m_2(c_3 - c_2) + m_3(c_1 - c_3) = 0$		a) $\frac{7}{13}$ b) $\frac{12}{13}$
	c) $c_1(m_2 - m_3) + c_2(m_3 - m_1) + c_3(m_1 - m_2) = 0$		5 1
	d) $C_1(m_1 - m_2) + c_2(m_2 - m_3) + C_3(m_3 - m_1) = 0$		c) $\frac{5}{13}$ d) $\frac{1}{13}$
37.	The angle between the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, is	42.	The length of perpendicular from $(3, 1)$ on line $4x + 3y + 20 = 0$, is
			a) 6 b) 7
	a) $\tan^{-1} \frac{a_1b_2 + a_2b_1}{a_1a_2 - b_1b_2}$ b) $\cot^{-1} \frac{a_1b_2 + b_1b_2}{a_1b_2 - a_2b_1}$		c) 5 d) 8
		43	The distance of the point $(-2, 3)$ from the line
	c) $\cot^{-1}\frac{a_1b_2-a_2b_2}{a_1a_2+b_1b_2}$ d) $\tan^{-1}\frac{a_1b_1-a_2b_2}{a_1a_2+b_1b_2}$	45.	x - y = 5 is
	$a_1a_2 + b_1b_2$ $a_1a_2 + b_1b_2$		_
	6.3 Distance of a point from a line		a) $5\sqrt{2}$ b) $2\sqrt{5}$
38	If the length of the perpendicular drawn from the		c) $3\sqrt{5}$ d) $5\sqrt{3}$
-0.	origin to the line whose intercepts on the axes	44.	Distance between the lines $5x + 3y - 7 = 0$ and
	are a and b be p, then		15x + 9y + 14 = 0 is
	a) $a^2 + b^2 = p^2$ b) $a^2 + b^2 = \frac{1}{p^2}$		a) $\frac{35}{\sqrt{34}}$ b) $\frac{1}{3\sqrt{34}}$
	r		
	c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{p^2}$ d) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$		c) $\frac{35}{3\sqrt{34}}$ d) $\frac{35}{2\sqrt{34}}$
	a o p a o p	I	

Straight Line

$\left(\right)$	Straig		ie de la companya de
	The position of the point $(8, -9)$ with respect to the lines $2x + 3y - 4 = 6$ and $6x + 9y + 8 = 0$ is a) Point lies on the same side of the lines b) Point lies on the different sides of the line c) Point lies on one of the line d) None of these The length of perpendicular from the point	5.	The equation of the line parallel to the $2x - 3y = 1$ and passing through the middle p of the line segment joining the points (1, 3) (1, -7), is a) $2x - 3y + 8 = 0$ b) $2x - 3y = 8$ c) $2x - 3y + 4 = 0$
	The length of perpendicular from the point (a cos α , a sin α) upon the straight line y = x tan α + c, c > 0 is a) c cos α b) c sin ² α c) c sec ² α d) c cos ² α The equations (b - c)x + (c - a) y + (a - b) = 0	6.	d) $2x - 3y = 4$ The intercept cut off from Y-axis is twice from X-axis by the line and line passes thro (1, 2), then its equation is a) $2x + y = 4$ b) $2x + y + 4 = 0$
47.	The equations $(b - c)x + (c - a)y + (a - b) - 0$ and $(b^3 - c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will represent the same line, if a) $b = c$ b) $c = a$ c) $a = b$ d) All the above	7.	c) $2x - y = 4$ d) $2x - y + 4 = 0$ The equation of the straight line passing thro the point (a cos ³ θ , a sin ³ θ) and .perpendic to the line x sec θ + y cosec θ = a is a) x cos θ - y sin 6 = a cos 2 θ
	<u>Critical Thinking</u> <u>6.1 Slope of a line, Equation</u>	7	 b) x cos θ + y sin θ = a cos 2θ c) x sin θ + y cos 0 = 3 cos 2θ d) None of these
1.	of a line in different formsEquation of the hour hand at 4 O' clock isa) $x - \sqrt{3}y = 0 =$ b) $\sqrt{3}x - y = 0$ c) $x + \sqrt{3}y = 0$ d) $\sqrt{3}x + y = 0$	8. D	Equation of the line passing through the p (-4, 3) and the portion of the line interce between the axes which is divided internal the ratio 5 : 3 by this point, is a) $9x + 20y + 96 = 0$ b) $20x + 9y + 96 = 0$
2.	 A straight line through origin bisects the line passing through the given points (a cosα, a sinα) and (a cosβ, a sinα), then the lines are a) Perpendicular b) Parallel c) Angle between them is π/4 d) None of these 	9.	c) $9x - 20y + 96 = 0$ d) None of these A straight line through P (1, 2) is such that intercept between the axes is bisected at H equation is a) $x + 2y = 5$ b) $x - y + 1 = 0$ c) $x + y - 3 = 0$
2	A line L is perpendicular to the line $5x - y = 1$ and		d) $2x + y - 4 = 0$

A line L is perpendicular to the line 5x - y = 1 and 3. the area of the triangle formed by the line L and coordinate axes is 5. The equation of the line L is

- b) $x + 5y = \pm 5\sqrt{2}$ a) x + 5y = 5d) $x - 5y = 5\sqrt{2}$ c) x - 5y = 5
- 4. A line passes through the point (3, 4) and cuts off intercepts from the co-ordinates axes such that their sum is 14. The equation of the line is
 - a) 4x 3y = 24b) 4x + 3y = 24c) 3x - 4y = 24d) 3x + 4y = 24
- **MATHEMATICS XI OBJECTIVE**

- 62 e line point) and e that rough rough icular
- point epted lly in
- nat its P. Its
- 10. The point P(a, b) lies on the straight line 3x + 2y = 13 and the point Q (b, a) lies on the straight line 4x - y = 5, then the equation of line PQ is

a)
$$x - y = 5$$

b) $x + y = 5$
c) $x + y = -5$
d) $x - y = -5$

- 11. A line AB makes zero intercepts on X axis and Y - axis and it is perpendicular to another line CD, 3x + 4y + 6 = 0. The equation of line AB is b) 4x - 3y + 8 = 0a) y = 4
 - d) 4x 3y + 6 = 0c) 4x - 3y = 0

\frown			
()	Straig	ht Lin	e 63
12.	The line passing through (-1, $\pi/2$) and		1
	perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$ is		a) $\frac{1}{2}$ b) 2
	a) $2 = \sqrt{3} \operatorname{r} \cos \theta - 2 \operatorname{r} \sin \theta$		c) $-\frac{1}{2}$ d) -2
	b) $5 = -2\sqrt{3} \operatorname{r} \cos \theta + 4 \operatorname{r} \sin \theta$	19.	The distance of the line $2x - 3y = 4$ from the point (1, 1) measured parallel to the line
	c) $2 = \sqrt{3} \operatorname{r} \cos \theta + 2 \operatorname{r} \sin \theta$		a) $\sqrt{2}$ b) $\frac{5}{\sqrt{2}}$
	d) $5 = 2\sqrt{3} \operatorname{r} \cos \theta + 4 \operatorname{r} \sin \theta$		a) $\sqrt{2}$ b) $\overline{\sqrt{2}}$
13.	The opposite vertices of a square are $(1, 2)$ and $(3, 8)$, then the equation of a diagonal of the square passing through the point $(1, 2)$, is		c) $\frac{1}{\sqrt{2}}$ d) 6
	a) $3x - y - 1 = 0$ b) $3y - x - 1 = 0$	20.	The equation of perpendicular bisectors of the sides AB and AC of a triangle ABC are
14	c) $3x + y + 1 = 0$ d) None of these		x - y + 5 = 0 and $x + 2y - 0$ respectively. If the
14.	The ends of the base of an isosceles triangle are at $(2a, 0)$ and $(0, a)$. The equation of one side is		point A is $(1, -2)$, then the equation of line BC is a) $23x + 14y$, $40 = 0$
	x = 2a. The equation of the other side is		a) $23x + 14y - 40 = 0$ b) $14x - 23y + 40 = 0$
	a) $x + 2y - a = 0$ b) $x + 2y = 2a$	-	c) $23x - 14y + 40 = 0$
	c) $3x + 4y - 4a = 0$ d) $3x - 4y + 4a = 0$		d) $14x + 23y - 40 = 0$
15.	The points $(1, 3)$ and $(5, 1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y = 2x + c$, then the value of c will be	21.	Let PS be the median of the triangle with vertices $P(2, 2)$, $Q(6, -1)$ and $R(7, 3)$. The equation of the line passing through $(1, -1)$ and parallel to PS is
	a) 4 b) - 4		a) $2x - 9y - 7 = 0$
	c) 2 d) - 2	_	b) $2x - 9y - 11 = 0$
16.	The equation of the lines on which the		c) $2x + 9y - 11 = 0$ d) $2x + 9y + 7 = 0$
	perpendiculars from the origin make 30 ^o angle with X axis and which form a triangle of area	22	The intercept of a line between the coordinate
	with X-axis and which form a triangle of area $\frac{50}{\sqrt{3}}$ with axes, are		axes is divided by the point $(-5, 4)$ in the ratio $1:2$. The equation of the line will be
			a) $5x - 8y + 60 = 0$
	a) $x + \sqrt{3}y \pm 10 = 0$ b) $\sqrt{3}x + y \pm 10 = 0$		b) $8x - 5y + 60 = 0$
	c) $x \pm \sqrt{3}y - 10 = 0$ d) None of these		c) $2x - 5y + 30 = 0$
17.	The line joining two points $A(2, 0)$, $B(3, 1)$ is rotated about A in anti-clockwise direction through an angle of 15 ⁰ . The equation of the line in the new position, is	23.	 d) None of these The number of lines that are parallel to 2x + 6y + 1 = 0 and have an intercept of length 10 between the coordinate axes is a) 1 b) 2
	a) $\sqrt{3}x - y - 2\sqrt{3} = 0$ b) $x - 3\sqrt{y} - 2 = 0$	24	c) 4 d) Infinitely many
10	c) $\sqrt{3}x + y - 2\sqrt{3} = 0$ d) $x + \sqrt{3}y - 2 = 0$	24.	A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular

18. If the lines 2x + 3ay - 1 = 0 and 3x + 4y + 1 = 0are mutually perpendicular, then the value of a will be

MATHEMATICS - XI OBJECTIVE

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

lines is constant, then the line passes through

b) A variable point

d) None of these

a) A fixed point

c) Origin

64 Straight Line **25.** A line through A(-5, -4) meets the lines **31.** The equation of straight line passing through the x + 3y + 2 = 0, 2x + y + 4 = 0 and x - y - 5 = 0 at intersection of the lines x - 2y = 1 and x + 3y = 2and parallel to 3x + 4y = 0 is B, C and D respectively. If a) 3x + 4y + 5 = 0b) 3x + 4y - 10 = 0 $\left(\frac{15}{\Lambda P}\right)^2 + \left(\frac{10}{\Lambda C}\right)^2 = \left(\frac{6}{\Lambda P}\right)^2$, then the equation c) 3x + 4y - 5 = 0 d) 3x + 4y + 6 = 0**32.** The point of intersection of the lines of the line is $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{y}{b} + \frac{y}{a} = 1$ lies on the line a) 2x + 3y + 22 = 0b) 5x - 4y + 7 = 0a) x - y = 0x) 3x - 2y + 3 = 0b) (x + y) (a + b) = 2abd) None of these c) (lx + my) (a + b) = (l + m) ab**26.** In what direction a line be drawn through the point d) All of these (1, 2) so that its points of intersection with the 33. If the co-ordinates of the vertices A, B, C of the line x + y = 4 is at a distance $\frac{\sqrt{6}}{2}$ from the given triangle ABC are (-4, 2), (12, -2) and (8, 6)respectively, then $\angle B =$ point a) $\tan^{-1}\left(-\frac{6}{7}\right)$ b) $\tan^{-1}\left(\frac{6}{7}\right)$ a) 30° b) 45° c) 60° d) 75° c) $\tan^{-1}\left(-\frac{7}{6}\right)$ d) $\tan^{-1}\left(\frac{7}{6}\right)$ 27. The sides AB, BC, CD and DA of a quadrilateral are x + 2y = 3, x=1, x - 3y = 4, 5x + y + 12 = 0respectively. The angle between diagonals AC **34.** If the lines y = 3x + 1 and 2y = x + 3 are equally and BD is inclined to the line y = mx + 4, then m =a) 45° b) 60° a) $\frac{1+3\sqrt{2}}{7}$ b) $\frac{1-3\sqrt{2}}{7}$ c) 90° d) 30° 6.2 Two intersecting lines and family of lines c) $\frac{1\pm 2\sqrt{2}}{7}$ d) $\frac{1\pm 5\sqrt{2}}{7}$ **28.** The equation of a line passing through the point of intersection of the lines 4x - 3y - 1 = 0 and 5x-2y-3=0 and parallel to the line **35.** The angle between the lines 2y - 3x + 2 = 0 is $x \cos \alpha_1 + y \sin \alpha_1 = p_1$ and $x \cos \alpha_2 + y \sin \alpha_2 = p_2$ a) x - 3y = 1js b) 3x - 2y = 1a) 0, 1 + α_2 b) $\alpha_1 - \alpha_2$ c) 2x - 3y = 1c) $2\alpha_1$ d) $2\alpha_{a}$ d) 2x - y = 1**36.** If the lines $y = (2 + \sqrt{3})x + 4$ and y = kx + 6 are 29. The straight line passing through the point of inclined at an angle 60° to each other, then the intersection of the straight lines x + 2y - 10 = 0value of k will be and 2x + y + 5 = 0 is b) 2 a) 1 a) 5x - 4y = 0b) 5x + 4y = 0c) - 1 d) - 2 c) 4x - 5y = 0d) 4x + 5y = 0**37.** The lines **30.** The equation of the straight line passing (p-q)(q-r)y + (r-p) = 0through the point of intersection of the lines 5x - 6y - 1 = 0 and 3x + 2y + 5 = 0 and (q-r)(r-p)y + (p-q) = 0perpendicular to the line 3x - 5y + 11 = 0 is (r-p) x + (p-q) y + (q-r) = 0 are a) 5x + 3y + 8 = 0 b) 3x - 5y + 8 = 0a) parallel b) perpendicular c) 5x + 3y + 11 = 0 d) 3x - 5y + 11 = 0c) concurrent d) none of these

MATHEMATICS - XI OBJECTIVE

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

()	Straig	ht Lin	le 65
38.	Which of the following lines is concurrent with the lines $3x + 4y + 6 = 0$ and $6x + 5y + 9 = 0$?	46.	The equation of a line passing through the point of intersection of lines $x + 2y + 3 = 0$ and
	a) $2x + 3y + 5 = 0$		3x + 4y + 7 = 0 and perpendicular to the line
	b) $3x + 3y + 5 = 0$		x - y + 9 = 0 is
	c) $1x + 9y + 3 = 0$		a) $x + y + 2 = 0$ b) $x - y - 2 = 0$
	d) None of these		c) $x + y - 5 = 0$ d) $x + 2y - 5 = 0$
39.	The straight lines $x + 2y - 9 = 0$, $3x + 5y - 5 = 0$ and $ax + by - 1 = 0$ are concurrent, if the straight line $35x - 22y + 1 = 0$ passes through the point	47.	Three sides of a triangle are represented by the equation $x + y - 6 = 0$, $2x + y - 4 = 0$ and $x+2y-5=0$. The co-ordinate of its orthocentre is
	a) (a, b) b) (b, a)		a) (10, 11) b) (2, 3)
	c) $(-a, -b)$ d) $(a, -b)$		c) $(-2, -3)$ d) $(-11, -10)$
40.	If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (a, b, c being distinct and different from 1) are concurrent, then	48.	The equations of two equal sides of an isosceles triangle are $7x - y + 3 = 0$ and $x + y - 3 = 0$ and the third side passes through the point $(1, -10)$. The equation of the third side is
	$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$		a) $3x - y - 31 = 0$ or $x + y + 7 = 0$
	1 - a 1 - b 1 - c		b) $3x - y + 7 = 0$ or $x + 3y - 31 = 0$
	a) 0 b) 1		c) $3x + y + 7 = 0$ or $x - 3y - 31 = 0$
	1		d) Neither $3x + y + 7$ nor $x - 3y - 31 = 0$
	c) $\frac{1}{a+b+c}$ d) 3abc	49.	For the straight lines given by the equation
41.	If the lines $ax + 2y + 1 = 0$, $bx + 3y + 1 = 0$ and		(2 + k)x + (1 + k)y = 5 + 7k, for different values of k which of the following statements is true
	cx + 4y + 1 = 0 are concurrent, then a, b, c are in	D	a) Lines are parallel
	a) A. P. b) G. P.	11	b) Lines pass through the point $(-2, 9)$
	c) H.P. d) None of these	1	c) Lines pass through the point $(2, -9)$
42.	The straight lines $4ax + 3by + c = 0$, where		d) None of these
	a + b + c = 0, will be concurrent, if point is	50.	
	a) (4,3) b) (1/4, 1/3)	50.	$l\mathbf{x} + \mathbf{m}\mathbf{y} + \mathbf{n} = 0$, $l\mathbf{x} + \mathbf{m}\mathbf{y} + \mathbf{n}' = 0$, $\mathbf{m}\mathbf{x} + \mathbf{y} + \mathbf{n} = 0$,
	c) (1/2, 1/3) d) None of these		mx + ly + n' = 0 include an angle
43.	The value of λ , for which the lines $3x + 4y = 5$,		<i>Y</i> .
	$5x + 4y = 4$ and $\lambda x + 4y = 6$ meet at a point is		a) $\frac{\pi}{3}$ b) $\frac{\pi}{2}$
	a) 2 b) 1		3 2
44.	c) 4 d) 3 The equation of a line passing through the point of intersection of lines $2x + 3y + 1 = 0$ and		c) $\tan^{-1}\left(\frac{l^2-m^2}{l^2+m^2}\right)$ d) $\tan^{-1}\left(\frac{2lm}{l^2+m^2}\right)$
	$3x - 5y - 5 = 0$ and making an angle of 45° with positive X-axis is a) $2x - 19y + 23 = 0$	51.	The opposite angular points of a square are $(3, 4)$ and $(1, -1)$. Then the co-ordinates of other two points are
	b) $19x - 23y + 15 = 0$		
	c) $19x - 19y - 23 = 0$		a) $D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$
45.	d) $20x - 19y + 23 = 0$ Which of the following represents the equation		b) $D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(\frac{1}{2}, \frac{5}{2}\right)$
	of a line passing through point of intersection of lines $x_1 + 2x_2 + 5 = 0$ and $2x_2 + 4x_3 + 1 = 0$ and		
	lines $x + 2y + 5 = 0$ and $3x + 4y + 1 = 0$ and passing through point (3, 2)?		c) $D\left(\frac{9}{2},\frac{1}{2}\right), B\left(-\frac{1}{2},\frac{5}{2}\right)$
	a) $2x + 3y - 5 = 0$ b) $3x + 2y - 13 = 0$		d) None of these
	c) $x + 3y + 13 = 0$ d) $3x - 2y - 7 = 0$		

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

MATHEMATICS - XI OBJECTIVE

	DGT MH –CET 11th MATH	IEMA	TICS Study Material	
\bigcirc	Straig	ht Lin	e	66
52.	If $a + b + c = 0$ and $p \neq 0$ the lines ax + (b + c) y = p, $bx + (c + a) y = p$ and cx + (a + b) y = p a) do not intersect b) intersect c) are concurrent d) none of these	60.	a) a^2 b) b^2 c) $a^2 + b^2$ d) $a^2 - b^2$ The ratio in which the line $3x + 4y$ the distance between $3x + 4y$ 3x + 4y - 5 = 0, is	
53. 54.	The equation of straight line passing through point of intersection of the straight lines $3x - y + 2 = 0$ and $5x - 2y + 7 = 0$ and having infinite slope is a) $x = 2$ b) $x + y = 3$ c) $x = 3$ d) $x = 4$ If vertices of a parallelogram are respectively	61.	a) 5:3 b) 3:7 c) 2:3 lf 2p is the length of perpendicular to the lines $\frac{x}{a} + \frac{y}{b} = 1$, then a ² , 8 a) A. P. b) G.P.	from the origin p^2 , b^2 are in
	(0, 0), (1, 0), (2, 2) and (1, 2), then angle between diagonals is a) $\frac{\pi}{3}$ b) $\frac{\pi}{2}$ c) $\frac{3\pi}{2}$ d) $\frac{\pi}{4}$		c) H.P. d) None of A point equidistant from the lines 4x + 3y + 10 = 0, $5x - 12y7x + 24y - 50 = 0$ is a) $(1, -1)$ b) $(1, 1)$ c) $(0, 0)$ d) $(0, 1)$ Which pair of points lie on the	+ 26 = 0 and
	6.3 Distance of a point from a line	03.	3x - 8y - 7 = 0?	same side of
	The points on the line $x + y = 4$ which lie at a unit distance from the line $4x + 3y = 10$, are a) $(3, 1), (-7, 11)$ b) $(3, 1), (7, 11)$ c) $(-3, 1), (-7, 11)$ d) $(1, 3), (-7, 11)$ If p and p' be the distances from origin to the	D 64.	 a) (0, -1) and (0, 0) b) (4, -3) and (0, 1) c) (-3, -4) and (1, 2) d) (-1, -1) and (3, 7) To which of the following types the set of the set of	
57.	lines x sec α + y cose α = k and x cos α - y sin α = k cos 2 α , then 4p ² + p' ² = a) k b) 2k c) k ² d) 2k ² The distance between two parallel lines		 represented by 2x + 3y - 1 = 0 and belong a) Parallel to each other b) Perpendicular to each other c) Inclined at 45° to each other 	2x + 3y - 5 = 0
	3x + 4y - 8 = 0 and $3x + 4y - 3 = 0$ is given by a) 4 b) 5 c) 3 d) 1	65.	d) Coincident pair of straight line The equations of two lines throug are at distance 'a' from the point	gh (0, a) which
58.	The vertex of an equilateral triangle is (2, -l) and the equation of its base is $x + 2y = 1$. The length of its sides is a) $\frac{4}{\sqrt{15}}$ b) $\frac{2}{\sqrt{15}}$		 a) y - a = 0 and 4x - 3y - 3a = 0 b) y - a = 0 and 3x - 4y + 3a = 0 c) y - a = 0 and 4x - 3y + 3a = 0 d) None of these 	0 0
59.	c) $\frac{4}{3\sqrt{3}}$ d) $\frac{1}{\sqrt{5}}$ The product of the perpendiculars drawn from the points $(\pm \sqrt{a^2 - b^2}, 0)$ on the line $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$, is	66.	If the equation $y = mx + c$ and x correpresents the same straight line, the analysis $p = c\sqrt{1 + m^2}$ b) $c = p\sqrt{1 + m^2}$ c) $cp = \sqrt{1 + m^2}$ d) $p^2 + c^2 + m^2 = 1$	• •

MATHEMATICS - XI OBJECTIVE

Straight Line

- 67. The equations of the lines through the point of intersection of the lines x - y + 1 = 0 and 2x - 3y + 5 = 0 and whose distance from the point (3, 2) is $\frac{7}{5}$, is a) 3x - 4y - 6 = 0 and 4x + 3y + 1 = 0b) 3x - 4y + 6 = 0 and 4x - 3y - 1 = 0c) 3x - 4y + 6 = 0 and 4x - 3y + 1 = 0d) None of these
- **68.** Equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120^o with the X-axis, is
 - a) $x\sqrt{3} + y + 8 = 0$ b) $x\sqrt{3} y = -8$

c)
$$x\sqrt{3} - y = 8$$
 d) $x - \sqrt{3}y + 8 = 0$

- **69.** In the equation $y y_1 = m(x x_1)$ if m and x_1 are fixed and different lines are drawn for different values of y_1 , then
 - a) The lines will pass through a single point
 - b) There will be a set of parallel lines
 - c) There will be one line only
 - d) None of these
- 70. The equations of the lines passing through the

point (1, 0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin,

are

- a) $\sqrt{3}x + y \sqrt{3} = 0, \sqrt{3}x y \sqrt{3} = 0$
- b) $\sqrt{3}x + y + \sqrt{3} = 0, \sqrt{3}x y + \sqrt{3} = 0$
- c) $x + \sqrt{3}y \sqrt{3} = 0$, $x \sqrt{3}x \sqrt{3} = 0$
- d) None of these
- 71. $(\sin \theta, \cos \theta)$ and (3, 2) lies on the same side of the line x + y = 1, then θ lies between

a) $(0, \pi/2)$ b) $(0, \pi)$

c)
$$(\pi/4, \pi/2)$$
 d) $(0, \pi/4)$

72. If we reduce 3x + 3y + 7 = 0 to the form $x \cos \alpha + y \sin \alpha = p$, then the value of p is

MATHEMATICS - XI OBJECTIVE

Competitive Thinking

<u>6.1 Slope of a line, Equation of a line in different forms</u>

The gradient of the line joining the points on the curve y = x² + 2x whose abscissa are 1 and 3, is

 a) 6
 b) 5

c) 4 d) 3

- 2. The line passing through the points (3, -4) and (-2, 6) and a line passing through (-3, 6) and (9, -18)
 - a) are perpendicular
 - b) are parallel
 - c) make an angle 60° with each other
 - d) none of these
- 3. The lines y = 2x and x = -2y are
 - a) parallel
 - b) perpendicular
 - c) equally inclined to axes
 - d coincident

4.

If the line passing through (4, 3) and (2, k) is perpendicular to y = 2x + 3, then k =

a)
$$-1$$
 b) 1
c) -4 d) 4

5. The equation of a straight line passing through the point (3, 2) and perpendicular to the line y = x is

a)
$$x - y = 5$$

c) $x + y = 1$
b) $x + y = 5$
d) $x - y = 1$

6. The equation of the line perpendicular to the line

 $\frac{x}{a} - \frac{y}{b} = 1$ and passing through the point at which it cuts X-axis, is

a)
$$\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$$
 b) $\frac{x}{b} + \frac{y}{a} + \frac{b}{a}$

c)
$$\frac{x}{b} + \frac{y}{a} = 0$$
 d) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$

7. The equation of a line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is

a) y-x+1=0b) y-x-1=0c) y-x+2=0d) y-x-2=0

Straight Line

8. The equation of a straight line passing through (-3, 2) and cutting an intercept equal in magnitude but opposite in sign from the axes is given by

a)
$$x - y + 5 = 0$$

b) $x + y - 5 = 0$
c) $x - y - 5 = 0$
d) $x + y + 5 = 0$

9. Equation of the line passing through (-1, 1) and perpendicular to the line 2x + 3y + 4 = 0 is

a)
$$2(y-l) = 3(x+l)$$
 b) $3(y-l) = -2(x+l)$

- c) y-l=2(x+l) d) 3(y-l)=x+l
- **10.** The points A (1, 3) and C (5, 1) are the opposite vertices of rectangle. The equation of line passing through other two vertices and of gradient 2, is
 - a) 2x + y 8 = 0 b) 2x y 4 = 0

c)
$$2x - y + 4 = 0$$
 d) $2x + y + 7 = 0$

- 11. A line is such that its segment between the straight lines 5x y 4 = 0 and 3x + 4y 4 = 0 is bisected at the point (1,5), then its equation is
 - a) 83x 35y + 92 = 0
 - b) 35x 83y + 92 = 0
 - c) 35x + 35y + 92 = 0
 - d) None of these
- 12. The equation of a line bisecting perpendicularly the segment joining the points (-4, 6) and (8, 8) is

a)
$$6x + y - 19 = 0$$
 b) $y = 7$

c)
$$6x + 2y - 19 = 0$$
 d) $x + 2y - 7 = 0$

- **13.** A (-1, 1), B(5, 3) are opposite vertices of a square in jry-plane. The equation of the other diagonal not passing through (A, B) of the square is given by
 - a) x 3y + 4 = 0b) 2x - y + 3 = 0c) y + 3x - 8 = 0d) x + 2y - 1 0
- 14. Equations of diagonals of square formed by lines x = 0, y = 0, x = 1 and y = 1 are
 - a) y = x, y + x = 1 b) y = x, x + y = 2

c)
$$2y = x$$
, $y + x = \frac{1}{3}$ d) $y = 2x$, $y + 2x = 1$

- 15. The diagonal passing through origin of a quadrilateral formed by x = 0, y = 0, x + y = 1 and 6x + y = 3 is
 - a) 3x 2y = 0 b) 2x 3y = 0
 - c) 3x + 2y = 0 d) None of these
- **16.** Equation of the straight line making equal intercepts on the axes and passing through the point (2,4) is
 - a) 4x y 4 = 0b) 2x + y - 8 = 0c) x + y - 6 = 0d) x + 2y - 10 = 0

17. The equations of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1, is

a)
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$
b) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
c) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
d) $\frac{x}{2} + \frac{y}{1} = 1$ and $\frac{x}{-2} + \frac{y}{1} = -1$

- 18. The equation to the line bisecting the join of (3, -4) and (5, 2) and having its intercepts on the X-axis and the Y-axis in the ratio 2 : 1 is
 - a) x + y 3 = 0b) 2x - y = 9c) x + 2y = 2d) 2x + y = 7
- 19. If the straight line ax + by + c = 0 always passes through (1, -2), then a, b, c are in

20. The inclination of the straight line passing through the point (-3, 6) and the midpoint of the line joining the points (4, -5) and (-2, 9) is

a)
$$\frac{\pi}{4}$$
 b) $\frac{\pi}{6}$
c) $\frac{\pi}{3}$ d) $\frac{3\pi}{4}$

21. For what values of a and b, the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in sign to those cut off by the line 2x - 3y + 6 = 0 on the axes ?

a)
$$a = \frac{8}{3}, b = -4$$
 b) $a = -\frac{8}{3}, b = -4$

c)
$$a = \frac{8}{3}, b = 4$$
 d) $a = -\frac{8}{3}, b = 4$

22. The medians AD and BE of a triangle with vertices A(0, b), B(0, 0) and C(a, 0) are perpendicular to each other, if

a)
$$a = \sqrt{2}b$$
 b) $a = -\sqrt{2}b$

c) Both (a) and (b) d) None of these

Straight Line

23. If $\left(\frac{3}{2}, \frac{5}{2}\right)$ is the midpoint of line segment intercepted by a line between axes, the

equation of the line is

a) 5x + 3y + 15 = 0 b) 3x + 5y + 15 = 0

c)
$$5x + 3y - 15 = 0$$
 d) $3x + 5y - 15 = 0$

24. The slope of a line that makes an angle of measure 30° with Y-axis is

a)
$$\sqrt{3}$$
 b) $-\sqrt{3}$

c)
$$\pm \sqrt{3}$$
 d) $\pm \frac{1}{\sqrt{3}}$

- **25.** If *l*, m, n are in arithmetic progression, then the straight line lx + my + n = 0 will pass through the point
 - a) (-1, 2) b) (l, -2)
 - c) (1,2) d) (2,1)
- **26.** A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A. Its equation is
 - a) x + y = 7
 - b) 3x 4y + 7 = 0
 - c) 4x + 3y = 24
 - d) 3x + 4y = 25
- 27. If a straight line passes through the points
 - $\left(\frac{-1}{2}, 1\right)$ and (1,2), then its x-intercept is a) -2 b) -1c) 2 d) 1
- c) 2
 d) 1
 28. The equation of the perpendicular bisector of the line segment joining A(-2, 3) and B(6, -5) is

a)
$$x - y = -1$$
 b) $x - y = 3$

c)
$$x + y = 3$$
 d) $x + y = 1$

29. The slope of the straight line which does not intersect X-axis is equal to

a)
$$\frac{1}{2}$$
 b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{3}$ d) 0

.

- **30.** If the three points A(1, 6), B(3, -4) and C(x,y) are collinear, then the equation satisfying by x and y is
 - a) 5x + y 11 = 0 b) 5x + 13y + 5 = 0
 - c) 5x 13y + 5 = 0 d) 13x y + 5 = 0

31. If the line px - qy = r intersects the co-ordinate axes at (a, 0) and (0, b), then the value of a + b is equal to

a)
$$r\left(\frac{q+p}{pq}\right)$$

b) $r\left(\frac{q-p}{pq}\right)$
c) $r\left(\frac{p-q}{pq}\right)$
d) $r\left(\frac{p+q}{p-q}\right)$

32. Equation of the line through (α, β) which is the midpoint of the line intercepted between the coordinate axes is

a)
$$\frac{x}{\alpha} + \frac{y}{\beta} = 1$$
 b) $\frac{x}{\alpha} + \frac{y}{\beta} = 2$

c)
$$\frac{x}{\alpha} - \frac{y}{\beta} = -1$$
 d) $\frac{x}{\alpha} - \frac{y}{\beta} = -2$

33. The equation of the line which is such that the portion of line segment between the coordinate axes is bisected at (4, -3) is

a)
$$3x + 4y = 24$$

b) $3x - 4y = 12$
c) $3x - 4y = 24$
d) $4x - 3y = 24$

34. Two lines represented by equations x + y = 1 and x + ky = 0 are mutually orthogonal if k is

b) - 1

6.2 Two intersecting lines and family of lines

- **35.** The equation of a line passing through the point of intersection of the lines x+5y+7=0, 3x+2y-5=0 and perpendicular to the line 7x+2y-5=0, is
 - a) 2x 7y 20 = 0
 - b) 2x + 7y 20 = 0
 - c) -2x + 7y 20 = 0
 - d) 2x + 7y + 20 = 0
- 36. A line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 1 is
 - a) 3x + 4y + 3 = 0 b) 3x + 4y = 0
 - c) 4x 3y + 3 = 0 d) 4x 3y = 3
- **37.** Equations of lines which passes through the points of intersection of the lines 4x 3y 1 = 0 and 2x 5y + 3 = 0 and are equally inclined to the axes are
 - a) $y \pm x = 0$ b) $y - 1 = \pm 1 (x - 1)$ c) $x - 1 = \pm 2 (y - 1)$ d) $y \pm x = 2$

		Strai	ght Lin	e	70
20	Angle between the	lines $\frac{X}{x} + \frac{y}{y} - 1$ and	46.	If the lines $4x + 3y$	y = 1, x - y = -5 and
00.	Angle between the	a b		5y + bx = 3 are con	ncurrent, then b equals
	$\frac{x}{a} - \frac{y}{b} = 1$ is			a) 1	b) 3
	$a b^{-1}$			c) 6	d) 0
	u	b) $\tan^{-1}\frac{2ab}{a^2+b^2}$	47.		arbitrary constants, then the $b(x + 3b)y + 3a + 4b = 0$
	c) $\tan^{-1} \frac{a^2 - b^2}{a^2 + b^2}$	d) None of thes		a) (-1, -2)	b) (1,2)
	a TU			c) (-2, -3)	d) (2,3)
59.	The angle between $x + 2y = -1$, is	the two lines $y - 2x = 9$ and	48.		onic progression, then straight
	a) 60°	b) 30°		line $\frac{x}{2} + \frac{y}{2} + \frac{1}{2} = 0$	always passes through a fixed
	c) 90°	d) 45°		point, that point is	
4.0	. 1 1 .			a) $(-1-2)$	b) $(-1, 2)$
10.	If $\frac{1}{ab'} + \frac{1}{ba'} = 0$, the	en lines $\frac{x}{a} + \frac{y}{b} = 1$ and		a) $(-1-2)$ c) $(1,-2)$	
	V V		49		the sides of a triangle are
	$\frac{x}{b'} + \frac{y}{a'} = 1$ are		47.		x = 5, and $3x + y = 0$. The line
	0 u			3x - 4y = 0 passes	
	a) Parallel		-	a) The incentre	
	b) Inclined at 60° to		-	b) The centroid	
	c) Perpendicular to			c) The circumcent	re
	d) Inclined at 30° to		D	d) The orthocentre	e of the triangle
1.	Angle between $x =$		50.	Two consecutive s	sides of a parallelogram are
	a) ∞	b) $\tan^{-1}(3)$		4x + 5y = 0 and $7x$	x + 2y = 0. If the equation to + $7y = 9$, then the equation
	c) $\tan^{-1}\left(\frac{1}{3}\right)$	d) None of these		of the other diagon	
12	The angle between	the lines $2x - y + 3 = 0$ and		a) $x + 2y = 0$	
12.	x + 2y + 3 = 0 is	the fines $2x - y + 3 = 0$ and		c) $x - y = 0$	d) None of these
	a) 90°	b) 60°	51.		d by the lines $x + y - 4 = 0$,
	c) 45°	d) 30°		3x + y = 4, x + 3y =	
3.	,	+ c = 0, bx + cy + a = 0 and		a) isosceles	b) equilateral
- •	cx + ay + b = 0 be c	· · · · · ·		c) right-angled	d) none of these
	a) $a^3 + b^3 + c^3 + 3a$	bc = 0	52.	•	c = 0, where $3a + 2b + 4c = 0$
	b) $a^3 + b^3 + c^3 - ab$	$\mathbf{c} = 0$		are concurrent at the $(1/2, 2/4)$	1
	c) $a^3 + b^3 + c^3 - 3a^3$	bc = 0		a) $(1/2,3/4)$	b) $(1,3)$
	d) None of these		52	c) (3,1)	d) (3/4,1/2)
4.	For what value of ' $4x - 3y + a = 0$ are	a' the lines $x = 3, y = 4$ and concurrent	53.	one of which is	ndition for two straight lines specified by the equation
	a) 0	b) -1		•	the other being represented $x = \alpha t + \beta$, $y = \alpha t + \delta$ is given
	a) 0 c) 2	d) $\frac{1}{3}$		by	$x = \alpha t + \beta$, $y = \gamma t + \delta$ is given
15	<i>,</i>	1 = 0, ax + 3y - 3 = 0 and		a) $\alpha\delta - b\alpha = 0, \beta$	$= \delta = c = 0$
rJ.	3x + 2y - 2 = 0 are	-		b) $a\alpha - b\gamma = 0, \beta = 0$	
	a) All a	b) $a = 4$ only		c) $a\alpha + b\gamma = 0$	
	/	, <u>-</u> -			

MATHEMATICS - XI OBJECTIVE

Straight Line

- 54. The equation of the line which passes through the point (3, -2) and are inclined at 60° to the line $\sqrt{3}x + y = 1$, is
 - a) $y + 2 = 0, \sqrt{3}x y 2 3\sqrt{3} = 0$
 - b) $x-2=0, \sqrt{3}x-y+2+3\sqrt{3}=0$
 - c) $\sqrt{3}x y 2 3\sqrt{3} = 0$
 - d) $x \sqrt{3}y + 2 + 3\sqrt{3} = 0$
- 55. The point (-4, 5) is the vertex of a square and one of its diagonals is 7x y + 8 = 0. The equation of the other diagonal is
 - a) 7x y + 23 = 0 b) 7y + x = 30
 - c) 7y + x = 31 d) x 7y = 30
- 56. The line passing through the point of intersection of x + y = 2, x - y = 0 and is parallel to x + 2y = 5 is
 - a) x + 2y = 1 b) x + 2y = 2
 - c) x + 2y = 4 d) x + 2y = 3
- 57. The line parallel to the X-axis and passing through the intersection of the lines ax + 2by + 3b = 0 and bx 2ay 3a = 0, where $(a, b) \neq (0, 0)$ is
 - a) above the X-axis at a distance of 3/2 from it
 - b) above the X-axis at a distance of 2/3 from it
 - c) below the X-axis at a distance of 3/2 from it.
 - d) below the X-axis at a distance of 2/3 from it
- **58.** The angle between the lines

$$x \cos \alpha + y \sin \alpha = a$$
 and $x \sin \beta - y \cos \beta = a$ is

b) $\pi + \beta - \alpha$

a)
$$\beta - \alpha$$

- c) $\frac{\pi}{2} + \beta + \alpha$ d) $\frac{\pi}{2} \beta + \alpha$
- **59.** A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x y + 3 = 0 and makes equal intercepts with axes. The equation of the line is
 - a) 5x + 5y 3 = 0 b) x + 5y 3 = 0

c)
$$5x - y - 3 = 0$$
 d) $5x + 5y + 3 = 0$

- 60. The length of the straight line x 3y = 1intercepted by the hyperbola $x^2 - 4y^2 = 1$, is
 - a) $\sqrt{10}$ units b) $\frac{6}{5}$ units
 - c) $\frac{6}{\sqrt{10}}$ units d) $\frac{6}{5}\sqrt{10}$ units

- 61. The straight lines x + y = 0, 5x + y = 4 and x + 5y = 4 form
 - a) an isosceles triangle
 - b) an equilateral triangle
 - c) a scalene triangle
 - d) a right angled triangle

6.3 Distance of a point from a line

62. The points on the X-axis whose perpendicular

distance from the line $\frac{x}{a} + \frac{y}{b} = 1$ is a, are

a)
$$\left[\frac{a}{b} (b \pm \sqrt{a^2 + b^2}), 0\right]$$

b) $\left[\frac{b}{a} (b \pm \sqrt{a^2 + b^2}), 0\right]$

c)
$$\left[\frac{a}{b}(a\pm\sqrt{a^2+b^2}),0\right]$$

- d) None of these
- 63. The distance between the lines 3x + 4y = 9 and 6x + 8y = 15 is
 - a) $\frac{3}{2}$ b) $\frac{3}{10}$ c) 6 d) Nor
 - d) None of these
- 64. The length of the perpendicular drawn from origin

upon the straight line $\frac{x}{3} - \frac{y}{4} = 1$ is a) $2\frac{2}{5}$ b) $3\frac{1}{5}$ c) $4\frac{2}{5}$ d) $3\frac{2}{5}$

- 65. Two points A and B have co-ordinates (1, 1) and (3, -2) respectively. The co-ordinates of a point distant $\sqrt{85}$ from B on the line through B perpendicular to AB are
 - a) (4,7) b) (7,4)
 - c) (5,7) d) (-5,-3)
- 66. The equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, 1). The length of the side of the triangle is
 - a) $\sqrt{3/2}$ b) $\sqrt{2}$
 - c) $\sqrt{2/3}$ d) None of these
- MATHEMATICS XI OBJECTIVE

Straight Line

67. Let α be the distance between the lines -x + y = 2 and x - y = 2 and β be the distance between the lines 4x - 3y = 5 and 6y - 8x = 1, (-1, -4) is then a) $20\sqrt{2}\beta = 11\alpha$ b) $20\sqrt{2}\alpha = 11\beta$ c) $11\sqrt{2}\beta = 20\alpha$ d) None of these **68.** Choose the correct statement which describe the position of .the point (-6, 2) relative to straight lines 2x + 3y - 4 = 0 and 6x + 9y + 8 = 0? a) Below both the lines is b) Above both the lines a) 0 c) In between the lines c) 2 d) None of these 69. If the equation of base of an equilateral triangle is 2x - y = 1 and the vertex is (-1, 2), then the length of the side of the triangle is a) $\sqrt{\frac{20}{3}}$ b) $\frac{2}{\sqrt{15}}$ c) $\sqrt{\frac{8}{15}}$ d) $\sqrt{\frac{15}{2}}$ 77. 70. The vertices of a triangle are (2, 1), (5, 2) and (4, 4). The lengths of the perpendicular from these vertices on the opposite sides are a) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{6}}$ b) $\frac{7}{\sqrt{6}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{10}}$ c) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{15}}$ d) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{10}}$ a) $\frac{15}{\sqrt{34}}$ 71. The vertices of a triangle OBC are (0, 0), (-3, -1) and (-1, -3) respectively. Then the c) $\frac{17}{2}$ equation of line parallel to BC which is at $\frac{1}{2}$ unit distant from origin and cuts OB and OC, is a) $2x + 2y + \sqrt{2} = 0$ b) $2x - 2y - \sqrt{2} = 0$ c) $2x - 2v + \sqrt{2} = 0$ d) None of these 72. The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32). The line K is parallel to K and the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then, the distance between L and K is MATHEMATICS - XI OBJECTIVE

73. The equation of one of the lines parallel to 4x - 3y = 5 and at a unit distance from the point a) 3x + 4y - 3 = 0 b) 3x + 4y + 3 = 0c) 4x - 3y + 3 = 0 d) 4x - 3y - 3 = 074. The length of the perpendicular from the origin on the line $\frac{x \cos \alpha}{b} - \frac{y \cos \alpha}{a} - 1 = 0$ is 75. The number of points on the line x + y = 4 which are unit distance apart from the line 2x + 2y = 5b) 1 d) Infinity 76. The distance between the parallel lines y = x + a, y = x + b is a) $\frac{|a-b|}{\sqrt{2}}$ b) |a-b|d) $\frac{|a+b|}{\sqrt{2}}$ c) |a + b|The equation of straight line equally inclined to the axis and equidistant from the points (1, -2)and (3, 4) is ax + by + c = 0, where a) a = 1, b = 1, c = 1 b) a = 1, b = 1, c = -1c) a = 1, b = 1, c = 2 d) None of these **78.** A straight line passes through the points (5, 0)and (0, 3). The length of perpendicular from the point (4, 4) on the line is b) $\frac{\sqrt{17}}{2}$ d) $\sqrt{\frac{17}{2}}$

17

\bigcirc	Straig	ht Lin	e 73	8
1.	Evaluation Test If the line $y = 7x - 25$ meets the circle $x^2 + y^2 = 25$ at the points A, B, then the distance between A and B is a) $\sqrt{10}$ b) 10 c) $5\sqrt{2}$ d) 5 If $f(\alpha) = x \cos \alpha + y \sin \alpha - p(\alpha)$, then the lines $f(\alpha) = 0$ and $f(\beta) = 0$ are perpendicular to each other, if a) $\alpha = \beta$ b) $\alpha + \beta = \frac{\pi}{2}$	8.	A square of side V lies above the X-axis and I one vertex at the origin. The side passing throu the origin makes an angle $\alpha(0 < \alpha < \pi/4)$ we the positive direction of X-axis. The equation of its diagonal not passing through the origin a) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$ c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ A line L passes through the points (1, 1) a	has ugh /ith ion n is
3.	a) $\alpha - \beta$ (b) $\alpha + \beta = \frac{\pi}{2}$ c) $ \alpha - \beta = \frac{\pi}{2}$ d) none of these The locus of the orthocentre of the triangle formed by the lines $(1 + p)x - py + p(1 + p) = 0$, (1 + q)x - qy + q(1 + q) = 0 and $y = 0$, where $p \neq q$, is		(2, 0) and another line L' passes through $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and perpendicular to L. Then the area of triangle formed by the lines L, L' and Y-axis i a) $\frac{15}{8}$ b) $\frac{25}{4}$ 25 25	the
4.	 a) a hyperbola b) a parabola c) an ellipse d) a straight line If the straight line ax + by + c = 0 make a triangle of constant area with coordinate axes, then a) a, b, c are in G.P. b) a, c, b are in G.P. c) c, a, b are in G.P. d) none of these 	9. D	c) $\frac{25}{8}$ d) $\frac{25}{16}$ The number of integer values of m, for which the x-co-ordinate of the point of intersection of the lines $3x + 4y = 9$ and $y = mx + 1$ is also an integer is a) 2 b) 0 c) 4 d) 1	the
5.	 Let 0 < α < π/2 be a fixed angle. If P =(cosθ, sinθ) and Q =(cos(α − θ), sin(θ − θ)), then Q is obtained from P by a) clockwise rotation around origin through an angle α b) anti-clockwise rotation around origin through an angle α c) reflection in the line through origin with slope tan α d) reflection in the line through origin with slope tan α/2 Let P(-1, 0), Q(0, 0) and R (3, 3√3) be three 	10.	If straight lines $ax + by + p = 0$ and $x \cos \alpha + \sin \alpha - p = 0$ are inclined at an angle $\frac{\pi}{4}$ are meet the straight line $x \sin \alpha - y \cos \alpha = 0$ at same point, then the value of $a^2 + b^2$ is equal a) 1 b) 2 c) 3 d) 4 A line $Ax + y = 1$ passes through the point $A(2, -7)$ meets the line BC whose equation $3x - 4y + 1 = 0$ at the point B. The equation the line AC so that $AB = AC$ is a) $52x + 89y + 519 = 0$ b) $52x + 89y - 519 = 0$ c) $89x + 52y + 519 = 0$	and the to oint n is
	points. The equation of the bisector of the angle PQR is a) $\frac{\sqrt{3}}{2}x + y = 0$ b) $x + \sqrt{3}y = 0$ c) $\sqrt{3}x + y = 0$ d) $x + \frac{\sqrt{3}}{2}y = 0$		c) $89x + 32y + 319 = 0$ d) $89x + 52y - 519 = 0$	

MATHEMATICS - XI OBJECTIVE

Straight Line

Answer Key

Classic	al Thinki	ng							
1. (A) 11. (A) 21. (D) 31. (A) 41. (A)	2. (A) 12. (A) 22. (B) 32. (C) 42. (B)	3. (A) 13. (C) 23. (C) 33. (A) 43. (A)	4. (B) 14. (A) 24. (B) 34. (C) 44. (C)	5. (A) 15. (B) 25. (C) 35. (B) 45. (A)	6. (A) 16. (B) 26. (C) 36. (A) 46. (A)	7. (A) 17. (C) 27. (C) 37. (B) 47. (D)	8. (D) 18. (A) 28. (B) 38. (D)	9. (C) 19. (D) 29. (B) 39. (B)	10. (B) 20. (A) 30. (B) 40. (B)
Critica	l Thinking	9			· .	:			
1. (C) 11. (C) 21. (D) 31. (C) 41. (A) 51. (C) 61. (C) 71. (D)	2. (A) 12. (A) 22. (B) 32. (D) 42. (B) 52. (A) 62. (C) 72. (D)	 (B) (A) (B) (C) (C) (C) 	4. (B) 14. (D) 24. (A) 34. (D) 44. (C) 54. (D) 64. (A)	5. (B) 15. (B) 25. (A) 35. (B) 45. (B) 55. (A) 65. (C)	6. (A) 16. (B) 26. (D) 36. (C) 46. (A) 56. (C) 66. (B)	7. (A) 17. (A) 27. (C) 37. (C) 47. (D) 57. (D) 67. (C)	8. (C) 18. (C) 28. (B) 38. (B) 48. (C) 58. (B) 68. (A)	9. (D) 19. (A) 29. (B) 39. (A) 49. (B) 59. (B) 69. (B)	10. (B) 20. (D) 30. (A) 40. (B) 50. (B) 60. (B) 70. (A)
Compe	etitive Thi	nking		13					
1. (A) 11. (A) 21. (D) 31. (B) 41. (B) 51. (A) 61. (A) 71. (A)	2. (B) 12. (A) 22. (C) 32. (B) 42. (A) 52. (D) 62. (A) 72. (D)	3. (B) 13. (C) 23. (C) 33. (C) 43. (C) 53. (C) 63. (B) 73. (D)	4. (D) 14. (A) 24. (C) 34. (B) 44. (A) 54. (A) 64. (A) 74. (D)	5. (B) 15. (A) 25. (B) 35. (A) 45. (A) 55. (C) 65. (C) 75. (A)	6. (D) 16. (C) 26. (C) 36. (A) 46. (C) 56. (D) 66. (C) 76. (A)	7. (B) 17. (A) 27. (A) 37. (B) 47. (A) 57. (C) 67. (A) 77. (B)	8. (A) 18. (C) 28. (B) 38. (A) 48. (C) 58. (D) 68. (A) 78. (D)	9. (A) 19. (A) 29. (D) 39. (C) 49. (D) 59. (A) 69. (A)	10. (B) 20. (D) 30. (A) 40. (C) 50. (C) 60. (D) 70. (D)
			Answe	rs to Eva	aluation	Test			
1. C) 11. (A)	2. C) 3	. D) 4.1	B) 5. 1	D) 6. C) 7. A)	8. D)) 9. (A	A) 10. (B)	1

MATHEMATICS - XI OBJECTIVE

Answer Key

a		
	~	Thinking
	Classical	Thinking

1.	(A)	2.	(A)	3.	(A)	4.	(B)	5.	(A)	6.	(A)	7. (A)	8.	(D)	9.	(C)	10.	(B)
11.	(A)	12.	(A)	13.	(C)	14.	(A)	15.	(B)	16.	(B)	17. (C)	18.	(A)	19.	(D)	20.	(A)
												27. (C)						
31.	(A)	32.	(C)	33.	(A)	34.	(C)	35.	(B)	36.	(A)	37. (B)	38.	(D)	39.	(B)	40.	(B)
												47. (D)						

Critical Thinking

1	1.	(C)	2.	(A)	3.	(B)	4.	(B)	5.	(B)	6.	(A)	7.	(A)	8.	(C)	9.	(D)	10. ()	B)
	11.	(C)	12.	(A)	13.	(A)	14.	(D)	15.	(B)	16.	(B)	17.	(A)	18.	(C)	19.	(A)	20. (1	D)
	21.	(D)	22.	(B)	23.	(B)	24.	(A)	25.	(A)	26.	(D)	27.	(C)	28.	(B)	29.	(B) ·	30. (4	A)
	31.	(C)	32.	(D)	33.	(D)	34.	(D)	35.	(B)	36.	(C)	37.	(C)	38.	(B)	39.	(A)	40. ()	B)
	41.	(A)	42.	(B)	43.	(B)	44.	(C)	45.	(B)	46.	(A)	47.	(D)	48.	(C)	49.	(B)	50. (1	B)
	51.	(C)	52.	(A)	53.	(C)	54.	(D)	55.	(A)	56.	(C)	57.	(D)	58.	(B)	59.	(B)	60. (I	B)
	61.	(C)	62.	(C)	63.	(D)	64.	(A)	65.	(C)	66.	(B)	67.	(C)	68.	(A)	69.	(B)	70. (4	A)
	71.	(D)	72.	(D)						00							* ₁₁			

Competitive Thinking

24	1.	(A)	2.	(B)	3.	(B)	4.	(D)	5.	(B)	6.	(D)	7.	(B)	8.	(A)	9.	(A)	10. (E	3)
	11.	(A)	12.	(A)	13.	(C)	14.	(A)	15.	(A)	16.	(C)	17.	(A)	18.	(C)	19.	(A)	20. (I))
	21.	(D)	22.	(C)	23.	(C)	24.	(C)	25.	(B)	26.	(C)	27.	(A)	28.	(B)	29.	(D)	30. (A	1)
	31.	(B)	32.	(B)	33.	(C)	34.	(B)	35.	(A)	36,	(A)	37.	(B)	38.	(A)	39.	(C)	40. (C	C)
	4 1.	(B)	42.	(A)	43.	(C)	44.	(A)	45.	(A)	46.	(C)	47.	(A)	48.	(C)	49.	(D)	50. (C	C)
	51.	(A)	52.	(D)	53.	(C)	54.	(A)	55.	(C)	56.	(D)	57.	(C)	58.	(D)	59.	(A)	60. (I))
	61.	(A)	62.	(A)	63.	(B)	64.	(A)	65.	(C)	66.	(C)	67.	(A)	68.	(A)	69.	(A)	70. (I))
	71.	(A)	72.	(D)	73.	(D)	74.	(D)	75.	(A)	76.	(A)	77.	(B)	78.	(D)				
									1											

Hints

Classical Thinking 1. The equation of line is $\frac{x}{a} + \frac{y}{a} = 1$. $\Rightarrow x + y - a = 0$ \therefore Slope = $-\frac{\text{coefficient of } x}{\text{coefficient of } y} = -1$ 2. From the figure, m = tan $\theta = \frac{-c}{3}$ $\Rightarrow 3 = \frac{-c}{3}$ $\Rightarrow c = -9$

Hence, the required equation is y = 3x - 9

3. Midpoint is (3; 4) and slope of $AB = \frac{6}{4}$

Slope of perpendicular =
$$\frac{-1}{6/4} = \frac{-2}{3}$$

the required equation is -2

$$y-4 = \frac{1}{3}(x-3)$$
$$\Rightarrow 2x+3y = 18$$

- 4. Slope of perpendicular = $\frac{-y'}{2a}$
- $\therefore \quad \text{the required equation is } y y' = -\frac{y'}{2a} (x x')$ $\Rightarrow xy' + 2ay 2ay' x'y' = 0$

5.
$$m = \frac{-1}{b'-b} = \frac{a'-a}{b-b'}$$
Midpoint is $\left(\frac{a+a'}{2}, \frac{b+b'}{2}\right)$
 \therefore the required equation is
 $y - \left(\frac{b+b'}{2}\right) = \frac{a'-a}{b-b'} \left[x - \left(\frac{a+a'}{2}\right)\right]$
 $\Rightarrow 2(b-b')y + 2(a-a')x = b^2 - b'^2 + a^2 - a'^2$
6. $m = \frac{5-0}{-4-0} = \frac{5}{-4}$
 \therefore the required equation is $5x + 4y = 0$.
7. Here, intercept on X-axis is 3 and intercept on Y-axis is -2.
So, using double intercept form, the required equation of the line is $\frac{x}{3} - \frac{y}{2} = 1$.
8. The required equation passing through $(3, -4)$
and having gradient $\frac{4}{3}$ is $y + 4 = \frac{4}{3}(x-3)$.
9. The required equation which passes through $(1, 2)$ and its gradient $m = 3$, is $y - 2 = 3(x-1)$.
10. The required equation passing through $(0, 0)$
and having gradient $m = \frac{1}{0}$, is $y = \frac{1}{0}x$
 $\Rightarrow x = 0$
11. Midpoint = $(4, -9)$ and slope $= \frac{-1}{\frac{3+1}{-1-5}} = \frac{3}{2}$
Hence, the required line is $y + 9 = \frac{3}{2}(x-4)$
 $\Rightarrow 3x - 2y = 30$
12. Intersection point on X-axis is $(2x_1, 0)$ and on Y-axis is $(0, 2y_1)$. Thus, equation of line passing through these points is $\frac{x}{x_1} + \frac{y}{y_1} = 2$.
13. The required equation which passes through (c, d) and its gradient $-\frac{a}{b}$, is $y - d = -\frac{a}{b}(x-c)$

$$\Rightarrow a(x-c) + b(y-d) = 0$$

1

14. The required equation is $y + 6 = \tan 45^{\circ}(x - 4)$ $\Rightarrow x - y - 10 = 0$

- Equation of a line passing through the given 15. points is $\frac{y-(-6)}{-6-10} = \frac{x-(-5)}{-5-3}$ $\Rightarrow \frac{y+6}{-16} = \frac{x+5}{-8} \Rightarrow 2x-y+4 = 0$
- Using double intercept form, we get 16. $\frac{x}{2 \operatorname{a} \operatorname{sec} \theta} + \frac{y}{2 \operatorname{a} \operatorname{cosec} \theta} = 1$ $\Rightarrow x \cos \theta + y \sin \theta = 2a$
- 17. Equation of line is y = mx + c \Rightarrow y = (tan 135°)x - 5 \Rightarrow y = -x - 5 $\Rightarrow x + y + 5 = 0$
- Since, the given line passes through (2, -3)19. and (4, -5).

$$\frac{2}{a} - \frac{3}{b} = 1 \text{ and } \frac{4}{a} - \frac{5}{b} = 1$$
$$\implies b = -1, a = -1$$

- 20. Equation of line perpendicular to ax + by + c = 0 is $bx - ay + \lambda = 0$ (i) It passes through (a, b).
 - $ab ab + \lambda = 0 \Rightarrow \lambda = 0$ Putting $\lambda = 0$ in (i), we get bx - ay = 0 which is the required equation.
- 21. The equation of a line passing through (2, 2)and perpendicular to 3x + y =is 3 $y-2=\frac{1}{3}(x-2)$ or x-3y+4=0.

Putting x = 0 in this equation, we get $y = \frac{4}{2}$

So,
$$y - \text{intercept} = \frac{4}{3}$$

23.

...

Slope of QR = $\frac{3\sqrt{3}-0}{3-0} = \sqrt{3}$ i.e., $\theta = 60^{\circ}$ Clearly, $\angle POR = 120^{\circ}$

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

=0

The lines are concurrent, if $\begin{vmatrix} 7 & -8 & 5 \\ 3 & -4 & 5 \\ 4 & 5 & k \end{vmatrix} = 0$

0. $\Rightarrow 7(-4k-25) + 8(3k-20) + 5(15+16) = 0$ $\Rightarrow k = -45$

OQ is the angle bisector of the angle PQR, so

line OQ makes 120° with the positive

Therefore, equation of the bisector of ∠PQR

is $y = \tan 120^{\circ}x \Rightarrow y = -\sqrt{3}x \Rightarrow \sqrt{3}x + y = 0$

Gradient of the line which passes through

(1, 0) and (-2, $\sqrt{3}$) is $m = \frac{\sqrt{3} - 0}{-2 - 1} = -\frac{1}{\sqrt{3}}$

direction of X-axis.

 $\Rightarrow \tan \theta = -\frac{1}{\sqrt{2}}$

 $\Rightarrow \theta = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = 150^{\circ}$

The point of intersection is (0, 0)

points (0, 0) and (2, 2) is y = x.

Hence, the lines are intersecting.

29. $\theta = \tan^{-1} \left| \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + 4 - 3} \right| = \tan^{-1}(-\sqrt{3})$

Considering smaller angle $\theta' = 60^{\circ}$.

Slope of given line is $\frac{1}{2}$

Thus, $\tan 45^\circ = \pm \frac{m - \frac{1}{2}}{1 + m \cdot \frac{1}{2}} \implies m = 3 \text{ or } \frac{-1}{3}$

Hence option (B) is correct.

= 120°

so that $m_1 = -\frac{2}{5}$, $m_2 = \frac{2}{5}$

also not coincident.

 $m_1 = \sqrt{3}, m_2 = 0$

 $\tan \theta = \left| \frac{\sqrt{3} - 0}{1 + 0} \right|$

 $\Rightarrow \theta = 60^\circ = \sqrt{3}$

Thus, the equation of line passing through the

Let $L_1 \equiv 2x + 5y - 7 \equiv 0$ and $L_2 \equiv 2x - 5y - 9 \equiv 0$,

Lines are neither parallel nor perpendicular,

25.

26.

27.

28.

30.

31.

$$33. \quad u = a_{1}x + b_{1}y + c_{1} = 0, \quad v = a_{2}x + b_{2}y + c_{2} = 0$$

$$let \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} = c$$

$$\Rightarrow a_{2} = \frac{a_{1}}{c}, \quad b_{2} = \frac{b_{1}}{c}, \quad c_{2} = \frac{c_{1}}{c}$$
Given that, $u + kv = 0$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} + k(a_{2}x + b_{2}y + c_{2}) = 0$$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} + k(a_{2}x + b_{2}y + c_{2}) = 0$$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} + k\left(\frac{b_{1}}{c}\right)y + k\left(\frac{c_{1}}{c}\right) = 0$$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} = 0 = u$$
34. Equation of lines are $\frac{x}{a} - \frac{y}{b} = 1$ and $\frac{x}{b} - \frac{y}{a} = 1$

$$\Rightarrow m_{1} = \frac{b}{a} \text{ and } m_{2} = \frac{a}{b}$$

$$\theta = \tan^{-1}\left|\frac{b}{1+\frac{b}{a},\frac{a}{b}}\right| = \tan^{-1}\frac{b^{2}-a^{2}}{2ab}$$
35.
$$\theta = \tan^{-1}\left|\frac{-\cot 30^{\circ} + \cot 60^{\circ}}{1+\cot 30^{\circ} \cot 60^{\circ}}\right|$$

$$= \tan^{-1}\left|\frac{\tan 60^{\circ} - \tan 30^{\circ}}{1+\tan 30^{\circ} \tan 60^{\circ}}\right| = 30^{\circ}$$
36.
$$\left|\frac{m_{1}}{m_{2}} - 1, \frac{c_{1}}{c_{3}}\right| = 0$$

$$\Rightarrow m_{1}(c_{2} - c_{3}) + m_{2}(c_{3} - c_{1}) + m_{3}(c_{1} - c_{2}) = 0$$
38.
$$p = \left|\frac{ab}{\sqrt{a^{2} + b^{2}}}\right|$$

$$\Rightarrow \frac{a^{2} + b^{2}}{a^{2}b^{2}} = \frac{1}{p^{2}} \Rightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} = \frac{1}{p^{2}}$$

3(12x+10y-3)-2(15x-18y+1)

= 6x + 66y - 11 = 0

32.

Length of perpendicular is 39.

$$\left|\frac{\frac{\mathbf{b}}{\mathbf{a}} - \frac{\mathbf{a}}{\mathbf{b}} - 1}{\sqrt{\left(\frac{1}{\mathbf{a}}\right)^2 + \left(-\frac{1}{\mathbf{b}}\right)^2}}\right| = \left|\frac{\mathbf{b}^2 - \mathbf{a}^2 - \mathbf{a}\mathbf{b}}{\sqrt{\mathbf{a}^2 + \mathbf{b}^2}}\right|$$

1 .

40. Straight line
$$y - y' = \frac{y'' - y'}{x'' - x'}(x - x')$$

 \therefore Length of perpendicular
 $= \left| \frac{x'(y'' - y') - y'(x'' - x')}{\sqrt{(x'' - x')^2 + (y'' - y')^2}} \right|$
 $= \left| \frac{x'y'' - y'x''}{\sqrt{(x'' - x')^2 + (y'' - y')^2}} \right|$
41. Required distance $= \left| \frac{-7}{\sqrt{12^2 + 5^2}} \right| = \frac{7}{13}$
42. Required length $= \left| \frac{4(3) + 3(1) + 20}{5} \right| = 7$
43. Required distance $= \left| \frac{-2 - 3 - 5}{\sqrt{1 + 1}} \right| = \frac{10}{\sqrt{2}} = 5$
44. Given lines are $5x + 3y - 7 = 0$ (i)
and $15x + 9y + 14 = 0$ or
 $5x + 3y + \frac{14}{3} = 0$ (ii)
Lines (i) and (ii) are parallel.
 \therefore Required distance $= \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right| = \left| \frac{-7 - \frac{14}{3}}{\sqrt{5^2 + 3^2}} \right|$
 $= \left| \frac{-35}{3\sqrt{34}} \right| = \frac{35}{3\sqrt{34}}$
45. L₁(8, -9) = 2(8) + 3(-9) - 4 = -15
L₂(8, -9) = 6(8) + 9(-9) + 8 = -25
Hence, point lies on same side of the lines.

46. Here, equation of line is $y = x \tan \alpha + c$, c > 0Length of the perpendicular drawn on line from point (a cos α , a sin α) is

 $\int = \left| \frac{-a \sin \alpha + a \cos \alpha \tan \alpha + c}{\sqrt{1 + \tan^2 \alpha}} \right| = \frac{c}{\sec \alpha} = c \cos \alpha$

47. The two lines will be identical if there exists some real number k such that $b^3 - c^3 = k(b-c), c^3 - a^3 = k(c-a),$ $a^3 - b^3 = k(a-b)$ $\Rightarrow b - c = 0 \text{ or } b^2 + c^2 + bc = k$ $\Rightarrow c - a = 0 \text{ or } c^2 + a^2 + ac = k$ $\Rightarrow a - b = 0 \text{ or } a^2 + b^2 + ab = k$ $\Rightarrow b = c, c = a, a = b$ $or b^2 + c^2 + bc = c^2 + a^2 + ca$ $\Rightarrow b^2 - a^2 = c(a-b)$ $\Rightarrow b = a \text{ or } a + b + c = 0$

 $\sqrt{2}$

Critical Thinking

 Since the hour, minute and second hands always pass through origin because one end of these hands is always at origin. Now, at 4 O' clock, the hour hand makes 30° angle in fourth quadrant. So, the equation of hour hand is

$$y = mx \Rightarrow y = -\frac{1}{\sqrt{3}}x$$

$$\Rightarrow x + \sqrt{3}y = 0$$

2. Mid point of $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ is

$$P\left(\frac{a(\cos\alpha + \cos\beta)}{2}, \frac{a(\sin\alpha + \sin\beta)}{2}\right)$$

Y

A (acos\alpha, asin\alpha)

B (acos\beta, asin\beta)

Slope of line AB is

$$\frac{a \sin \beta - a \sin \alpha}{a \cos \beta - a \cos \alpha} = \frac{\sin \beta - \sin \alpha}{\cos \beta - \cos \alpha} = m_1$$
and slope of OP is
$$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = m_2$$
Now, $m_1 \times m_2 = \frac{\sin^2 \beta - \sin^2 \alpha}{\cos^2 \beta - \cos^2 \alpha} = -1$
Hence, the lines are perpendicular.

A line normandicular to the line 5x

3. A line perpendicular to the line 5x - y = 1 is given by $x + 5y - \lambda = 0 = L$

In intercept form $\frac{x}{\lambda} + \frac{y}{\lambda/5} = 1$

So, area of triangle is $\frac{1}{2} \times$ (Multiplication of intercepts)

$$\Rightarrow \frac{1}{2}(\lambda) \times \left(\frac{\lambda}{5}\right) = 5$$

 $\Rightarrow \lambda = \pm 5 \sqrt{2}$ Hence, the equation of required line is $x + 5y = \pm 5 \sqrt{2}$ 4. Given, $a + b = 14 \Rightarrow a = 14 - b$ Hence, the equation of straight line is $\frac{x}{14-b} + \frac{y}{b} = 1$ Also, it passes through (3, 4) $\frac{3}{14-b} + \frac{4}{b} = 1$... \Rightarrow b = 8 or 7 Therefore, equations are 4x + 3y = 24 and x+y=7Mid point = $\left(\frac{1+1}{2}, \frac{3-7}{2}\right) = (1, -2)$ 5. Therefore, required line is $y+2=\frac{2}{3}(x-1) \Rightarrow 2x-3y=8$ Let the intercept be a and 2a, then the equation 6. of line is $\frac{x}{2} + \frac{y}{22} = 1$, but it also passes through (1, 2), therefore a = 2. Hence, the required equation is 2x + y = 4 $x \cos \theta - y \sin \theta = a(\cos^4 \theta - \sin^4 \theta) = a \cos 2\theta$ 7. 8. B(0,b) (-4,3) By the section formula, we get $a = -\frac{32}{3}$ and $b = \frac{24}{5}$ Hence, the required equation is given by $\frac{x}{-(32/3)} + \frac{y}{(24/5)} = 1$ $\Rightarrow 9x - 20y + 96 = 0$ Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$ 9. The co-ordinates of the mid point of the intercept AB between the axes are $\left(\frac{a}{2}, \frac{b}{2}\right)$ $\frac{a}{2} = 1, \frac{b}{2} = 2 \implies a = 2, b = 4$ Hence, the equation of the line is $\frac{x}{2} + \frac{y}{4} = 1 \Longrightarrow 2x + y = 4$

Point P(a, b) is on 3x + 2y = 1310. So, 3a + 2b = 13.....(i) Point Q(b, a) is on 4x - y = 5So, 4b - a = 5.....(ii) By solving (i) and (ii), we get a = 3, b = 2Now, equation of PQ is $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$ $\Rightarrow y-2=\frac{3-2}{2-3}(x-3)$ \Rightarrow y - 2 = -(x - 3) $\Rightarrow x + y = 5$ 11. Given, line AB makes 0 intercepts on X-axis and $Y - axis so, (x_1, y_1) = (0, 0)$ Slope of perpendicular = $\frac{4}{2}$ Equation is $y - 0 = \frac{4}{3}(x - 0)$... \Rightarrow 4x - 3y = 0 Perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{3}$ is 12. $\sqrt{3}\sin\left(\frac{\pi}{2}+\theta\right)+2\cos\left(\frac{\pi}{2}+\theta\right)=\frac{k}{r}$ It is passing through $(-1, \pi/2)$ $\sqrt{3}\sin\pi + 2\cos\pi = \frac{k}{1} \Rightarrow k = 2$ $\sqrt{3}\cos\theta - 2\sin\theta = \frac{2}{3}$ $\Rightarrow 2 = \sqrt{3}r\cos\theta - 2r\sin\theta$ 13. Slope $=\frac{8-2}{2}=3$ The diagonal is y - 2 = 3(x - 1) $\Rightarrow 3x - y - 1 = 0$ Line AB will pass through (0, a) and (2a, k)14. A(2a,k)x = 2a(0, a)BBut as we are given AB = AC \Rightarrow k = $\sqrt{4a^2 + (k-a)^2} \Rightarrow$ k = $\frac{5a}{2}$ Hence, the required equation is 3x - 4y + 4a = 0

DGT Group - Tuitions (Feed Concepts) Xlth - Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

15. Let ABCD be a rectangle. Given, A (1, 3) and C (5, 1).

Intersecting point of diagonal of a rectangle is same or at midpoint. So, midpoint of AC is (3, 2). Also, y = 2x + c passes through (3, 2). Hence, c = -4

16. Let p be the length of the perpendicular from the origin on the given line. Then its equation in normal form is

$$x\cos 30^\circ + y\sin 30^\circ = p \text{ or } \sqrt{3}x + y = 2p$$

This meets the coordinate axes at $A\left(\frac{2p}{\sqrt{3}},0\right)$

and B(0, 2p)

...

Area of $\triangle OAB = \frac{1}{2} \left(\frac{2p}{\sqrt{3}} \right) 2p = \frac{2p^2}{\sqrt{3}}$ $\Rightarrow \frac{2p^2}{\sqrt{3}} = \frac{50}{\sqrt{3}} \Rightarrow p = \pm 5$ Hence, the lines are $\sqrt{3}x + y \pm 10 = 0$

17. Here, slope of AB = 1 $\Rightarrow \tan \theta = m_1 = 1$ or $\theta = 45^{\circ}$

tan (45° + 15°) = tan 60°
(∵ It is rotated anticlockwise so the angle will be 45° + 15° = 60°)
Thus, slope of new line is √3

Hence, the equation is $y = \sqrt{3}x + c$, but it still passes through (2,0), $c = -2\sqrt{3}$ Thus, required equation is $y = \sqrt{3}x - 2\sqrt{3}$

18.
$$\left(\frac{-2}{3a}\right)\left(\frac{-3}{4}\right) = -1 \text{ or } a = \frac{-1}{2}$$

19. The slope of line x + y = 1 is -1. It makes an angle of 135° with X-axis. . . The equation of line passing through (1, 1)making an angle of 135° and is. $\frac{x-1}{\cos 135^\circ} = \frac{y-1}{\sin 135^\circ} = r$ $\Rightarrow \frac{x-1}{-1/\sqrt{2}} = \frac{y-1}{1/\sqrt{2}} = \mathbf{r}$ Co-ordinates of any point on this line are ... $\left(1-\frac{\mathbf{r}}{\sqrt{2}},1+\frac{\mathbf{r}}{\sqrt{2}}\right)$ If this point lies on 2x - 3y = 4, then $2\left(1-\frac{r}{\sqrt{2}}\right)-3\left(1+\frac{r}{\sqrt{2}}\right)=4$ $\Rightarrow r = \sqrt{2}$ 20. Let the equation of perpendicular bisector FN of AB is x - y + 5 = 0.....(i) A(1,-2)NM (x_1, y_1) (x_2, y_2) middle point F of AB The is $\left(\frac{x_1+1}{2}, \frac{y_1-2}{2}\right)$ Which lies on line (i). Λ. $x_1 - y_1 = -13$(ii) Also AB is perpendicular to FN. So the product of their slopes is -1. $v_{1} + 2$)

i.e.,
$$\frac{y_1 + 2}{x_1 - 1} \times 1 = -1$$
 or $x_1 + y_1 = -1$ (iii

On solving (ii) and (iii), we get B(-7, 6)

Similarly,
$$C\left(\frac{11}{5},\frac{2}{5}\right)$$

Hence, the equation of BC is 14x+23y-40=0

21. S = midpoint of QR = $\left(\frac{6+7}{2}, \frac{-1+3}{2}\right)$ = $\left(\frac{13}{2}, 1\right)$ \therefore 'm' of PS = $\frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$ -2

... The required equation is $y+1=\frac{-2}{9}(x-1)$ i.e., 2x+9y+7=0 22. Let the co-ordinates of axes are A (a, 0) and B(0, b), but the point (-5, 4) divides the line AB in the ratio of 1 : 2. Therefore, the co-ordinates of axes are $\left(\frac{-15}{2}, 0\right)$ and (0, 12).

Therefore, the equation of line passing through these coordinate axes is given by 8x - 5y + 60 = 0

23. The equation of any line parallel to 2x + 6y + 7 = 0 is 2x + 6y + k = 0.

This meets the axes at $A\left(-\frac{k}{2},0\right)$ and

$$B\left(0,-\frac{k}{6}\right)$$

By hypothesis, AB = 10

$$\Rightarrow \sqrt{\frac{k^2}{4} + \frac{k^2}{36}} = 10 \Rightarrow \sqrt{\frac{10k^2}{36}} = 10$$
$$\Rightarrow 10k^2 = 3600 \Rightarrow k = \pm 6\sqrt{10}$$

Hence, there are two lines given by $2x + 6y \pm 6\sqrt{10} = 0$

24. Take two perpendicular lines as the coordinate axes. If a, b be the intercepts made by the moving line on the coordinate axes, then the equation of the line is

> $\frac{x}{a} + \frac{y}{b} = 1$ (i) Let $\frac{1}{a} + \frac{1}{b} = \frac{1}{k}$ i.e., $\frac{k}{a} + \frac{k}{b} = 1$ (ii)

The result (ii) shows that the straight line (i) passes through a fixed point (k, k).

25. The equation of line passing through

A(-5, -4) is $\frac{x+5}{\cos\theta} = \frac{y+4}{\sin\theta}$ Let AB = r₁, AC = r₂, AD = r₃ The co-ordinate of B is (r₁ cos θ - 5, r₁sin θ - 4) which lies on x + 3y + 2 = 0 $r_1 = \frac{15}{\cos\theta + 3\sin\theta}$ Similarly, $\frac{10}{AC} = 2\cos\theta + \sin\theta$ and $\frac{6}{AD} = \cos\theta - \sin\theta$ Putting in the given relation, we get $(2\cos\theta + 3\sin\theta)^2 = 0$

$$\Rightarrow \tan \theta = -\frac{2}{3}$$

 \therefore The equation of line is $y + 4 = -\frac{2}{3}(x+5)$

 $\Rightarrow 2x + 3y + 22 = 0$

26. Let the required line through the point (1,2) be inclined at an angle θ to the axis of X. Then its equation is $\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta} = r$ (i)

The co-ordinates of a point on the line (i) are $(1 + r \cos \theta, 2 + r \sin \theta)$

If this point is at a distance $\frac{\sqrt{6}}{3}$ form (1, 2),

then
$$r = \frac{\sqrt{6}}{3}$$

Therefore, the point is

$$\left(1+\frac{\sqrt{6}}{3}\cos\theta, 2+\frac{\sqrt{6}}{3}\sin\theta\right)$$

But this point lies on the line x + y = 4

$$\frac{\sqrt{6}}{3}(\cos\theta + \sin\theta) = 1$$
 or

 $\sin\theta + \cos\theta = \frac{3}{\sqrt{6}}$

$$\Rightarrow \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta = \frac{\sqrt{3}}{2}$$

-(Dividing both sides by $\sqrt{2}$)
- $\Rightarrow \sin(\theta + 45^\circ) = \sin 60^\circ \text{ or } \sin 120^\circ$

$$\Rightarrow \theta = 15^{\circ} \text{ or } 75^{\circ}$$

 $\Rightarrow 3x - 2y = 1$

- 27. The four vertices on solving are A(-3, 3), B(1, 1), C(1, -1) and D(-2, -2).
 m₁ = slope of AC = -1,
 m₂ = slope of BD = 1
- $m_1m_2 = -1$ Hence, the angle between diagonals AC and BD is 90°.
- 28. The point of intersection of the lines is (1, 1). and slope of the line 2y - 3x + 2 = 0 is $\frac{3}{2}$ Hence, the equation is $y - 1 = \frac{3}{2}(x - 1)$

29. \Rightarrow m² - m - 6 = ± (6m² - m - 1) From option (B), $\Rightarrow 5m^2 + 5 = 0 \text{ or } 7m^2 - 2m - 7 = 0$ 2 -105 = 1(0-20) - 2(-25) - 10(3) = 02 $\Rightarrow 7m^2 - 2m - 7 = 0$ 5 \Rightarrow m = $\frac{1\pm 5\sqrt{2}}{7}$ Hence, option (B) is the correct answer. 35. $\theta = \tan^{-1} \frac{-\cot \alpha_1 + \cot \alpha_2}{1 + \cot \alpha_2 \cot \alpha_2}$ 30. The point of intersection of 5x - 6y - 1 = 0and 3x + 2y + 5 = 0 is (-1, -1). Now the line perpendicular to $= \tan^{-1} \left| \frac{\tan \alpha_1 - \tan \alpha_2}{1 + \tan \alpha_2 \tan \alpha_1} \right| = \alpha_1 - \alpha_2$ 3x - 5y + 11 = 0 is 5x + 3y + k = 0, but it passes through (-1, -1) $\Rightarrow -5 - 3 + k = 0 \Rightarrow k = 8$ Hence, required line is 5x + 3y + 8 = 0. 36. $\frac{k - (2 + \sqrt{3})}{1 + k(2 + \sqrt{3})} = \sqrt{3}$ The intersection point of lines x - 2y = 1 and 31. x + 3y = 2 is $\left(\frac{7}{5}, \frac{1}{5}\right)$ and the slope of required \Rightarrow k-2- $\sqrt{3} = \sqrt{3} + 2k\sqrt{3} + 3k$ $\Rightarrow k = \frac{-2(1+\sqrt{3})}{2(1+\sqrt{3})} = -1$ line $=-\frac{3}{4}$ $\begin{vmatrix} \mathbf{p} - \mathbf{q} & \mathbf{q} - \mathbf{r} & \mathbf{r} - \mathbf{p} \\ \mathbf{q} - \mathbf{r} & \mathbf{r} - \mathbf{p} & \mathbf{p} - \mathbf{q} \\ \mathbf{r} - \mathbf{p} & \mathbf{p} - \mathbf{q} & \mathbf{q} - \mathbf{r} \end{vmatrix} = \begin{vmatrix} 0 & \mathbf{q} - \mathbf{r} & \mathbf{r} - \mathbf{p} \\ 0 & \mathbf{r} - \mathbf{p} & \mathbf{p} - \mathbf{q} \\ 0 & \mathbf{p} - \mathbf{q} & \mathbf{q} - \mathbf{r} \end{vmatrix} = 0$ Equation of required line is 37. $y - \frac{1}{5} = \frac{-3}{4} \left(x - \frac{7}{5} \right)$ $[By C_1 \rightarrow C_1 + C_2 + C_3]$ $\Rightarrow \frac{3x}{4} + y = \frac{21}{20} + \frac{1}{5} \Rightarrow 3x + 4y = 5$ Hence, the lines are concurrent. \Rightarrow 3x + 4y - 5 = 0 38. Check by options. From option (A), we get the line is 32. Intersection point of 3 4 6 $\left(\frac{ab}{a+b},\frac{ab}{a+b}\right)$, which is satisfying all the $6 \quad 5 \quad 9 = 3(25 - 27) - 4(12) + 6(8) \neq 0$ 2 3 5 equations given in options (A), (B) and (C). Hence, (D) is correct. From option (B), we get 3 4 6 Here, equation of AB is x + 4y - 4 = 0(i) 33. $6 \quad 5 \quad 9 = 3(25 - 27) - 4(3) + 6(3) = 0$ and equation of BC is 2x + y - 22 = 0(ii) Thus angle between (i) and (ii) is given by 3 3 5 $\tan^{-1} \frac{-\frac{1}{4}+2}{1+(-\frac{1}{4})(-2)} = \tan^{-1} \frac{7}{6}$ 39. The three lines are concurrent, if 1 2 -9 $3 \ 5 \ -5 = 0$ a b -1 34. Let θ be the acute angle which the line

y = mx + 4 makes with the lines y = 3x + 1 and

 $\tan \theta = \left| \frac{m-3}{1+3m} \right|$ and $\tan \theta = \left| \frac{m-\frac{1}{2}}{1+\frac{m}{2}} \right|$

2y = x + 3.

 $\Rightarrow \frac{m-3}{1+3m} = \frac{2m-1}{m+2}$

Then,

 $\Rightarrow 35a - 22b + 1 = 0$ which is true if the line 35x - 22y + 1 = 0passes through (a, b).

40. If the given lines are concurrent, then

 $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} = 0$ [By C₂ \rightarrow C₂ - C₁and C₃ \rightarrow C₃ - C₁]

DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

$$\begin{aligned} \Rightarrow a(b - 1)(c - 1) - (b - 1)(1 - a) - (c - 1) \\ (1 - a) = 0 \\ \Rightarrow \frac{1}{a + \frac{1}{1 + b} + \frac{1}{1 - c}} = 0 \\ \hline (1 - a)(1 - b)(1 - 0)(1 - c)(1 - c)(1$$

41.

42.

43.

44.

...

45.

....

It is passing through (3, 2)

...

 $H \equiv (-11, -10)$

5) + k ($3 \times 3 + 4 \times 2 + 1$) = 0

= 0

H

-(1+k)

.....(ii)

.....(iii)

Any line through (1, -10) is given by 48. y + 10 = m(x - 1)1 Since, it makes equal angle say ' α ' with the given lines 7x - y + 3 = 0 and x + y - 3 = 0 $\tan \alpha = \frac{m-7}{1+7m} = \frac{m-(-1)}{1+m(-1)}$ \Rightarrow m = $\frac{1}{2}$ or - 3 Hence, the two possible equations of third side are 3x + y + 7 = 0, x - 3y - 31 = 0. 49. Putting k = 1, 2, we get 3x + 2y = 12.....(i) 4x + 3y = 19....(ii) The given lines are not parallel. Hence on solving them, we get x = -2, y = 9Therefore, the lines pass through (-2, 9)Since, the distance between the parallel lines 50. lx + my + n = 0 and lx + my + n' = 0 is same as between parallel the distance lines mx + v + n = 0 and mx + lv + n' = 0. Therefore, the parallelogram is a rhombus. Since, the diagonals of a rhombus are at right angles, therefore the required angle is $\frac{\pi}{2}$. 51. Slope of AC = 5/2. Let m be the slope of a line inclined at an angle of 45° to AC, Then $\tan 45^\circ = \pm \frac{2}{1+m.\frac{5}{2}} \Rightarrow m = -\frac{7}{3}, \frac{3}{7}$ B

Thus, let the slope of AB or DC be $\frac{3}{7}$ and that

of AD or BC be $-\frac{1}{3}$. Then, equation of AB is 3x-7y+19=0. Also the equation of BC is 7x + 3y - 4 = 0On solving these equations, we get B $\left(-\frac{1}{2}, \frac{5}{2}\right)$ Now let the co-ordinates of the vertex D be (h, k). Since the middle points of AC and BD are same

$$\therefore \frac{1}{2} \left(h - \frac{1}{2} \right) = \frac{1}{2} (3+1) \Longrightarrow h = \frac{9}{2}$$
$$\Rightarrow \frac{1}{2} \left(k + \frac{5}{2} \right) = \frac{1}{2} (4-1)$$
$$\Rightarrow k = \frac{1}{2}$$
Hence, $D = \left(\frac{9}{2}, \frac{1}{2} \right)$

52. By the given condition of a + b + c = 0, the three lines reduce to

$$x-y=\frac{p}{a}$$
 or $\frac{p}{b}$ or $\frac{p}{c}$ ($p \neq 0$).

All these lines are parallel. Hence, they do not intersect in finite plane.

53. Required line should be $(3x-y+2) + \lambda(5x-2y+7) = 0$ (i) $\Rightarrow (3+5\lambda)x - (2\lambda+1)y + (2+7\lambda) = 0$ $\Rightarrow y = \frac{3+5\lambda}{2\lambda+1}x + \frac{2+7\lambda}{2\lambda+1}$ (ii) As the equation (ii), has infinite slope, $2\lambda + 1 = 0$ $\Rightarrow \lambda = -1/2$ Putting $\lambda = -1/2$ in equation (i) we have (3x-y+2) + (-1/2)(5x-2y+7) = 0

54. Here,

 $\Rightarrow x = 3$

Slope of Ist diagonal = $m_1 = \frac{2-0}{2-0} = 1$ $\Rightarrow \theta_1 = 45^\circ$

Slope of Π^{nd} diagonal = $m_2 = \frac{2-0}{1-1} = \infty$

$$\Rightarrow \theta_2 = 90^\circ$$

$$\Rightarrow \theta_2 - \theta_1 = 45^\circ = \frac{\pi}{4}$$

55. Let the point be (h, k), then h + k = 4....(i) and

$$1 = \left| \frac{4h + 3k - 10}{\sqrt{4^2 + 3^2}} \right|$$

$$\Rightarrow 4h + 3k = 15 \dots(ii) \text{ and}$$

$$4h + 3k = 5 \dots(iii)$$

On solving (i) and (ii), and (i) and (iii), we get the required points (3, 1) and (-7, 11).

DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

56. Here,
$$p = \left| \frac{-k}{\sqrt{\sec^2 \alpha + \csc^2 \alpha}} \right|$$

and $p' = \left| \frac{-k \cos 2\alpha}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}} \right|$
 $\therefore 4p^2 + p'^2 = \frac{4k^2}{\sec^2 \alpha + \csc^2 \alpha} + \frac{k^2 (\cos^2 \alpha - \sin^2 \alpha)^2}{1} = 4k^2 \sin^2 \alpha \cos^2 \alpha + k^2 (\cos^4 \alpha + \sin^4 \alpha) - 2k^2 \cos^2 \alpha \sin^2 \alpha$
 $= k^2 (\sin^2 \alpha + \cos^2 \alpha)^2 = k^2$

57. Let the distance of both lines be p_1 and p_2 from origin, then $p_1 = -\frac{8}{5}$ and $p_2 = -\frac{3}{5}$. Hence, distance between both the lines

$$= |\mathbf{p}_1 - \mathbf{p}_2| = \frac{5}{5} = 1$$

58.
$$|AD| = \left|\frac{2-2-1}{\sqrt{1^2+2^2}}\right|$$

 $= \frac{1}{\sqrt{5}}$
 $\tan 60^\circ = \frac{AD}{BD}$
 $\Rightarrow \sqrt{3} = \frac{1/\sqrt{5}}{BD}$
 $\Rightarrow BD = \frac{1}{\sqrt{15}}$
 $\therefore BC = 2BD = 2/\sqrt{15}$
 $A(2, -1)$
 $A(2, -1)$
 $A(2, -1)$
 D
 D
 $x + 2y - 1 = 0$

59.
$$p_{1} \cdot p_{2} = \left(\frac{b\sqrt{a^{2} - b^{2}}\cos\theta + 0 - ab}{\sqrt{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}}\right)$$
$$\times \left(\frac{-b\sqrt{a^{2} - b^{2}}\cos\theta - ab}{\sqrt{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}}\right)$$
$$= \frac{-[b^{2}(a^{2} - b^{2})\cos^{2}\theta - a^{2}b^{2}]}{(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)}$$
$$= \frac{b^{2}[a^{2} - a^{2}\cos^{2}\theta + b^{2}\cos^{2}\theta]}{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}$$
$$= \frac{b^{2}[a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta]}{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}$$
$$= b^{2}$$

60. Lines 3x + 4y + 2 = 0 and 3x + 4y + 5 = 0 are on the same side of the origin. The distance between these lines is $d_1 = \left|\frac{2-5}{\sqrt{3^2 + 4^2}}\right| = \frac{3}{5}$. Lines 3x + 4y + 2 = 0 and 3x + 4y - 5 = 0 are on the opposite sides of the origin. The distance between these lines is $d_2 = \left|\frac{2+5}{\sqrt{3^2 + 4^2}}\right| = \frac{7}{5}$. Thus, 3x + 4y + 2 = 0 divides the distance between 3x + 4y + 5 = 0 and 3x + 4y - 5 = 0

in the ratio $d_1 : d_2$ i.e., 3 : 7. 61. $2p = \left| \frac{0 + 0 - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right|$ $\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4p^2} \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{8p^2}$ $\Rightarrow a^2, 8p^2, b^2$ are in H.P.

62. Lengths of perpendicular from (0,0) on the given lines are each equal to 2.

- 63. $L_{(-1,-1)} = 3(-1) 8(-1) 7 < 0$ $L_{(3,7)} = 3 \times 3 - 8 \times 7 - 7 < 0$ Hence, (-1, -1) and (3, 7) lie on the same side of line.
- 64. Let $L_1 = 2x + 3y 7 = 0$ and $L_2 = 2x + 3y 5 = 0$

Here, slope of
$$L_1 =$$
 slope of $L_2 = -\frac{2}{3}$

Hence, the lines are parallel.

65. Equation of any line through (0, a) is y-a = m(x-0) or mx - y + a = 0(i) If the length of perpendicular from (2a, 2a) to the line (i) is 'a', then $a = \pm \frac{m(2a) - 2a + a}{\sqrt{m^2 + 1}}$

$$\Rightarrow$$
 m = 0, $\frac{4}{2}$

Hence, the required equations of lines are y-a=0, 4x-3y+3a=0

66. If the given lines represent the same line, then the length of the perpendiculars from the origin to the lines are equal, so that $\frac{c}{\sqrt{1+m^2}} = \frac{p}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}}$ $\Rightarrow c = p\sqrt{1+m^2}$

67. Point of intersection is (2, 3).
Therefore, the equation of line passing
through (2, 3) is
$$y-3 = m(x-2)$$

or $mx - y - (2m-3) = 0$
According to the condition,
 $\left|\frac{3m-2-(2m-3)}{\sqrt{1+m^2}}\right| = \frac{7}{5} \Rightarrow m = \frac{3}{4}, \frac{4}{3}$
Hence, the equations are $3x - 4y + 6 = 0$ and $4x - 3y + 1 = 0$.
68. Slope $= -\sqrt{3}$
 \therefore Line is $y = -\sqrt{3}x + c$
 $\Rightarrow \sqrt{3}x + y = c$
Now $\frac{c}{2} = |4|$
 $\Rightarrow c = \pm 8$
 $\Rightarrow x\sqrt{3} + y = \pm 8$
69. Since, m (gradient) and x_1 are tixed and y_1 is variate, then they, form a set of parallel lines because gradient of every line remains fm²

70. The equation of lines passing through (1, 0) is given by y = m(x - 1).

Its distance from origin is $\frac{\sqrt{3}}{2}$

$$\Rightarrow \left| \frac{-m}{\sqrt{1+m^2}} \right| = \frac{\sqrt{3}}{2} \Rightarrow m = \pm \sqrt{3}$$

Hence, the lines are $\sqrt{3}x + y - \sqrt{3} = 0$ and $\sqrt{3}x - y - \sqrt{3} = 0$

71. As $(\sin \theta, \cos \theta)$ and (3, 2) lie on the same side of x + y - 1 = 0, they should be of same sign.

$$\sin \theta + \cos \theta - 1 > 0 \text{ as } 3 + 2 - 1 > 0$$
$$\Rightarrow \sqrt{2} \sin \left(\theta + \frac{\pi}{4} \right) > 1$$
$$\Rightarrow \sin \left(\theta + \frac{\pi}{4} \right) > \frac{1}{\sqrt{2}} \Rightarrow 0 < \theta < \frac{\pi}{4}$$

72. Given form is
$$3x + 3y + 7 = 0$$

$$\Rightarrow \frac{3}{\sqrt{3^2 + 3^2}}x + \frac{3}{\sqrt{3^2 + 3^2}}y + \frac{7}{\sqrt{3^2 + 3^2}}$$

...

p

$$\frac{3}{3\sqrt{2}}x + \frac{3}{3\sqrt{2}}y = \frac{-7}{3\sqrt{2}}$$
$$= \left|\frac{-7}{3\sqrt{2}}\right| = \frac{7}{3\sqrt{2}}$$

1.

The points are (1, 3) and (3, 15).

- Hence, gradient = $\frac{15-3}{3-1} = \frac{12}{2} = 6$
- 2. $m_1 = \frac{6+4}{-2-3} = \frac{10}{-5} = -2$ and $m_2 = \frac{-18-6}{9-(-3)} = -2$

Hence, the lines are parallel.

- 3. Since, $m_1m_2 = (2)\left(-\frac{1}{2}\right) = -1$
- :. the lines are perpendicular.
- 4. $\mathbf{m}_1 \mathbf{m}_2 = -1$ $\Rightarrow \left(\frac{\mathbf{k} - 3}{2 - 4}\right) (2) = -1 \Rightarrow 2\mathbf{k} - 6 = 2 \Rightarrow \mathbf{k} = 4$

5. The equation of a line perpendicular to x - y = 0 is -x - y + c = 0(i) Since, the line passes through (3, 2). $\therefore -3 - 2 + c = 0$

$$c = 5$$

Putting $c = 5$ in (i), we get
 $x + y = 5$

6. The given line is bx - ay = ab(i) It cuts X-axis at (a, 0).

The equation of a line perpendicular to (i) is ax + by = k.

Since, the line passes through $(a, 0) \Rightarrow k = a^2$ Hence, required equation of line is $ax+by = a^2$

i.e.,
$$\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$$

7. The equation of a line perpendicular to x + y + 1 = 0 is x - y + λ = 0. Since, the line passes through the point (1, 2).
∴ 1 - 2 + λ = 0

- $\Rightarrow \lambda = 1$
- Hence, required equation of line is y-x-1=0
- 8. Let the equation be $\frac{x}{a} + \frac{y}{-a} = 1$.

 $\Rightarrow x - y = a \qquad \dots(i$ But, it passes through (-3, 2) $\therefore a = -3 - 2 = -5$ Putting the value of a in (i), we get

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

x - y + 5 = 0

) DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

- The required equation passing through (-1, 1)9. and having gradient $\frac{3}{2}$ is $y-1 = \frac{3}{2}(x+1) \Longrightarrow 2(y-1) = 3(x+1)$
- 10. Midpoint $\equiv (3, 2)$.
- the required equation is y 2 = 2(x 3)... $\Rightarrow 2x - y - 4 = 0$
- Any line through the middle point M(1, 5) of 11. the intercept AB may be taken as

 $\frac{x-1}{\cos\theta} = \frac{y-5}{\sin\theta} = r$(i)

Since, the points A and B are equidistant from M and on the opposite sides of it. Therefore, if the co-ordinates of A are obtained by putting r = d in (i), then the coordinates of B are given by putting r = -d. Now, the point $A(1 + d \cos\theta, 5 + d \sin\theta)$ lies on the line 5x - y - 4 = 0 and point $B(1 - d \cos\theta, 5 - d \sin\theta)$ lies on the line

3x + 4y - 4 = 0. $5(1 + d\cos\theta) - (5 + d\sin\theta) - 4 = 0$ · · · and $3(1 - d\cos\theta) + 4(5 - d\sin\theta) - 4 = 0$ Eliminating 'd', we get $\frac{\cos\theta}{35} = \frac{\sin\theta}{83}$

Hence, the required line is $\frac{x-1}{35} = \frac{y-5}{83}$ or

83x - 35y + 92 = 0.

- $Midpoint \equiv (2, 7)$ 12. Slope of perpendicular = -6the required equation is y - 7 = -6(x - 2)·.. $\Rightarrow 6x + y - 19 = 0$
- The required diagonal passes through the 13. midpoint of AB and is perpendicular to AB. So, its equation is y - 2 = -3(x - 2) or y + 3x - 8 = 0.
- Co-ordinates of the vertices of the square are 14. A(0, 0), B(0, 1), C(1, 1) and D(1, 0).

Now, the equation of AC is y = x and of BD is

$$y-1=-\frac{1}{1}(x-0) \Longrightarrow x+y=$$

15.

From figure, diagonal BD is passing through origin, therefore its equation is given by

$$\left(y - \frac{3}{5}\right) = \frac{-(3/5)}{-(2/5)} \left(x - \frac{2}{5}\right)$$

16. Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$.

Given, a = bSo, equation of line is x + y = aSince, this line passes through (2, 4). 1.18 2 + 4 = a

the required equation of line is x + y = 6i.e., x + y - 6 = 0

17. Here,
$$\mathbf{a} + \mathbf{b} = -$$

 $\Rightarrow a^2 = 4$

 $\Rightarrow a = \pm 2$

 $\Rightarrow a = 6$

required line is $\frac{x}{a} - \frac{y}{1+a} = 1$ (i) :. Since. line (i) passes through (4, 3).

$$\frac{4}{a} - \frac{3}{1+a} = 1$$

$$\Rightarrow 4 + 4a - 3a = a + a^{2}$$

the required lines are $\frac{x}{2} - \frac{y}{3} = 1$ and ... $\frac{x}{2} + \frac{y}{1} = 1.$

Equation of the line has its intercepts on the 18. X-axis and Y-axis in the ratio 2:1 i.e., 2a and а a set to de la company

$$\therefore \frac{x}{2a} + \frac{y}{a} = 1 \Rightarrow x + 2y = 2a \qquad \dots(i)$$

Line (i) also passes through midpoint of
(3, -4) and (5, 2) i.e., (4, -1)
$$\therefore 4 + 2(-1) = 2a \Rightarrow a = 1$$

Hence, the equation of required line is
 $x + 2y = 2$

- 19. ax + by + c = 0 always passes through (1, -2).
 ∴ a 2b + c = 0 ⇒ 2b = a + c Therefore, a, b and c are in A.P.
- 20. Midpoint of the line joining the points (4, -5)and (-2, 9) is $\left(\frac{4-2}{2}, \frac{-5+9}{2}\right)$ i.e., (1, 2)
- ... Inclination of straight line passing through point (-3, 6) and midpoint (1, 2) is

$$m = \frac{2-6}{1+3}$$

$$\Rightarrow \tan \theta = -1$$

$$\Rightarrow \theta = \frac{3\pi}{4}$$

21. The equation of lines in intercept form are

$$\frac{x}{-8/a} + \frac{y}{-8/b} = 1$$
$$\frac{x}{-3} + \frac{y}{2} = 1$$

According to the given condition,

$$-\frac{8}{a} = -(-3) \text{ and } -\frac{8}{b} = -2$$
$$\Rightarrow a = -\frac{8}{3} \text{ and } b = 4$$

22.

From figure,

- $\begin{pmatrix} \frac{b/2}{a/2} \\ \Rightarrow a^2 = 2b^2 \Rightarrow a = \pm \sqrt{2}b$
- 23. Let the points of the required line on X-axis and Y-axis be A(a, 0) and B(0, b) respectively. Since, $\left(\frac{3}{2}, \frac{5}{2}\right)$ is midpoint of AB. $\therefore \qquad \frac{a+0}{2} = \frac{3}{2}$ and $\frac{0+b}{2} = \frac{5}{2} \Rightarrow a = 3$ and b = 5 $\therefore \qquad \text{the equation of line is } \frac{x}{3} + \frac{y}{5} = 1$ $\Rightarrow 5x + 3y - 15 = 0$
- 24. Since, the line makes an angle of measure 30° with Y-axis. Therefore, the line will make an angle of measure 60° or -60° with X-axis. Slope of line = $\tan 60^\circ$ or $\tan(-60^\circ)$... $=\sqrt{3}$ or $-\sqrt{3} = \pm\sqrt{3}$ Since, *l*, m, n are in A.P. 25. $2\mathbf{m} = l + \mathbf{n}$ Given equation of line is lx + my = n = 0Consider, option (B), If the point (1, -2) satisfy the given equation. $l-2m+n=0 \Rightarrow 2m=l+n$... \Rightarrow *l*, m, n are A.P. 26. The required equation of line is $\frac{x}{6} + \frac{y}{9} = 0 \implies 4x + 3y = 24$ Slope = $\frac{(2-1)}{1-(-\frac{1}{2})} = \frac{1}{(\frac{3}{2})} = \frac{2}{3}$ 27. So, equation of the line is $y - 2 = \frac{2}{3}(x - 1)$ $\Rightarrow y = \frac{2}{3}x + \frac{4}{3}$ Putting y = 0, to find x-intercept, $\frac{2}{3}x + \frac{4}{3} = 0$ $\Rightarrow x = -2$ x-intercept = -2... Midpoint of given line segment = (2, -1)28. Now, slope of the line segment = $\frac{-8}{2} = -1$ Slope of the required line segment is 1 the required equation of line is y + 1 = 1 (x - 2) . . $\Rightarrow x - y = 3$ Here, the straight line is parallel to X-axis. 29. So, the slope of such a line = 0. 30. Since, the required line will be a line passing through A and B. $\frac{y-6}{6-(-4)} = \frac{x-1}{1-3}$... $\Rightarrow 10x - 10 = -2y + 12 \Rightarrow 5x + y - 11 = 0$ 31. Since, px - qy = r intersects at X-axis and Y-axis. \therefore $\mathbf{a} = \frac{\mathbf{r}}{\mathbf{p}}$ and $\mathbf{b} = -\frac{\mathbf{r}}{\mathbf{q}}$ \therefore $a+b=\frac{r}{p}-\frac{r}{q}=r\left(\frac{q-p}{pq}\right)$

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

 $m_1 m_2 = -1 \Rightarrow \frac{1}{k} = -1 \Rightarrow k = -1$ X' • Ο θ Hence, the equation is $y + 2 = \frac{2}{7} (x - 3)$ $\Rightarrow 2x - 7y - 20 = 0$ DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

32. Let
$$P\left(\alpha = \frac{a}{2}, \beta = \frac{b}{2}\right)$$
 be the midpoint of the line joining (a, 0) and (0, b).

$$\alpha = \frac{a}{2} \Rightarrow a = 2\alpha \qquad \dots(i)$$

and $\beta = \frac{b}{2} \Rightarrow b = 2\beta \qquad \dots(ii)$
Y
(0, b)
P($\alpha = \frac{a}{2}, \beta = \frac{b}{2}$)
O
(a, 0)
X

. .

- Equation of a straight line cutting off intercepts a and b on X-axis and Y-axis respectively is
- $\frac{x}{a} + \frac{y}{b} = 1$ $\Rightarrow \frac{x}{2\alpha} + \frac{y}{2\beta} = 1$[From (i) and (ii)] $\frac{1}{2} \Rightarrow \frac{x}{\alpha} + \frac{y}{\beta} = 2$

33.
$$\frac{a+0}{2} = 4 \Rightarrow a = 8$$

and $\frac{b+0}{2} = -3 \Rightarrow b = -6$
(0,b)
(4,-3)
(a,0)

- the required equation of the line is $\frac{x}{8} + \frac{y}{-6} = 1$ $\Rightarrow \frac{3x-4y}{24} = 1 \Rightarrow 3x-4y = 24$
- 34. Here, $m_1 = -1$, $m_2 = -\frac{1}{k}$. For orthogonal lines,
- 35. Point of intersection of the lines is (3, -2)Also, slope of perpendicular = $\frac{2}{7}$

- 36. Point of intersection is $y = -\frac{21}{5}$ and $x = \frac{23}{5}$ $\therefore \quad 3x + 4y = \frac{3(23) + 4(-21)}{5} = \frac{69 - 84}{5} = -3$
 - Hence, required line is 3x + 4y + 3 = 0
 - 37. Slopes of the lines are 1 and -1

Since, the point of intersection is (1, 1)Hence, the required equations are $y-1=\pm 1(x-1)$

The lines are bx + ay - ab = 0 and 38. bx - ay - ab = 0. Hence, the required angle is

$$\tan^{-1} \left| \frac{ab - (-ab)}{b^2 + (-a^2)} \right| = \tan^{-1} \left| \frac{2ab}{b^2 - a^2} \right|$$
$$= 2 \tan^{-1} \frac{b}{a} \left[\because 2 \tan^{-1} \frac{y}{x} = \tan^{-1} \left| \frac{2xy}{y^2 - x^2} \right| \right]$$

The given lines are perpendicular because 39. $m_1 m_2 = (2) \left(\frac{-1}{2} \right) = -1$

Hence, the angle between the two lines is 90°.

 $a_1a_2 + b_1b_2 = \frac{1}{ab'} + \frac{1}{a'b} = 0$ 40.

Therefore, the lines are perpendicular.

41.
$$\theta = 90^{\circ} - \tan^{-1}\left(\frac{1}{3}\right)$$

 $\Rightarrow \tan \theta = \cot\left[\tan^{-1}\left(\frac{1}{3}\right)\right] = 3$
 $\Rightarrow \theta = \tan^{-1}(3)$
Y
x = 2

The slopes of the lines are $m_1 = \frac{-1}{2}$, $m_2 = 2$ 42. ... $m_1m_2 = -1$ So, the lines are perpendicular i.e., $\theta = 90^{\circ}$ 43. Here, the given lines are ax + by + c = 0bx + cy + a = 0cx + ay + b = 0a b c The lines will be concurrent, if $\begin{vmatrix} b & c & a \end{vmatrix} = 0$ c a b $\Rightarrow a^3 + b^3 + c^3 - 3abc = 0$ 44. Here the lines are x - 3 = 0, y - 4 = 0 and 4x - 3y + a = 0.These will be concurrent, if $\begin{vmatrix} 1 & 0 & -3 \\ 0 & 1 & -4 \\ 4 & -3 & a \end{vmatrix} = 0 \Rightarrow a = 0$ Given lines are concurrent, if $\begin{vmatrix} 2 & 1 & -1 \\ a & 3 & -3 \\ 3 & 2 & -2 \end{vmatrix} = 0$ 45. $\Rightarrow - \begin{vmatrix} 2 & 1 & 1 \\ a & 3 & 3 \\ 3 & 2 & 2 \end{vmatrix} = 0$ This is true for all values of a because C_2 and C_3 are identical. Lines are concurrent, if $\begin{vmatrix} 4 & 3 & -1 \\ 1 & -1 & 5 \\ b & 5 & -3 \end{vmatrix} = 0$ 46. $\Rightarrow 4(3-25) - 3(-3-5b) - 1(5+b) = 0$ $\Rightarrow -88 + 9 + 15b - 5 - b = 0$ $\Rightarrow -84 + 14b = 0$ $\Rightarrow b = 6$ 47. (a-2b)x + (a+3b)y + 3a + 4b = 0or a(x + y + 3) + b(-2x + 3y + 4) = 0, which represents a family of straight lines through point of intersection of x + y + 3 = 0 and -2x + 3y + 4 = 0 i.e. (-1, -2).

48. a, b, c are in H. P., then $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$ (i) Given, line is $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ (ii) From (i) and (ii), we get $\frac{1}{a}(x-1) + \frac{1}{b}(y+2) = 0$ Since, $a \neq 0$, $b \neq 0$ So, (x-1) = 0 and (y+2) = 0 $\Rightarrow x = 1$ and y = -2

- 49. Two sides x 3y = 0 and 3x + y = 0 of the given triangle are perpendicular to each other. Therefore, its orthocentre is the point of intersection of x - 3y = 0 and 3x + y = 0 i.e., (0, 0).
- 50. Since, equation of diagonal 11x + 7y = 9 does not pass through origin, so it cannot be the equation of the diagonal OB. Thus, on solving the equation AC with the equations OA and

OC, we get
$$A\left(\frac{5}{3}, -\frac{4}{3}\right)$$
 and $C\left(\frac{-2}{3}, \frac{7}{3}\right)$
 $A^{\frac{1}{2}}$
 A^{\frac

Therefore, the midpoint of AC is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Hence, the equation of OB is y = xi.e., x - y = 0.

51. The vertices of triangle are the intersection points of these given lines. The vertices of Δ are A(0, 4), B(1, 1), C(4, 0) Now,

 $AB = \sqrt{(0-1)^2 + (4-1)^2} = \sqrt{10}$ $BC = \sqrt{(1-4)^2 + (1-0)^2} = \sqrt{10}$ $AC = \sqrt{(0-4)^2 + (4-0)^2} = 4\sqrt{2}$

 \therefore AB = BC

- $\therefore \Delta$ is isosceles.
- 52. Dividing both sides of relation 3a+2b+4c = 0by 4, we get $\frac{3}{4}a + \frac{1}{2}b + c = 0$, which shows that for all values of a, b and c each member of the set of lines ax + by + c = 0 passes through the point $\left(\frac{3}{4}, \frac{1}{2}\right)$

- 53. Given lines are ax + by + c = 0and $x = \alpha t + \beta$, $y = \gamma t + \delta$ After eliminating t, we get $\gamma x - \alpha y + \alpha \delta - \gamma \beta = 0$ For parallelism condition, $\frac{a}{\gamma} = \frac{b}{-\alpha} \Rightarrow a\alpha + b\gamma = 0$
- 54. The equation of a straight line passing through (3, -2) is y + 2 = m(x 3)(i) The slope of the line $\sqrt{3}x + y = 1$ is $-\sqrt{3}$

So, $\tan 60^\circ = \pm \frac{m - (-\sqrt{3})}{1 + m (-\sqrt{3})}$

On solving, we get m = 0 or $\sqrt{3}$

Putting the values of m in (i), the required equation of lines are y + 2 = 0 and $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$

- 55. Since, the point (-4, 5) does not lie on the diagonal 7x y + 8 = 0, so point will lie on the other diagonal.
 Also, diagonals are perpendicular.
- \therefore Slope of other diagonal = $\frac{-1}{7}$
- : equation of the other diagonal is

 $y-5 = -\frac{1}{7}(x+4) \Rightarrow 7y+x = 31$

- 56. Required equation of line which is parallel to x + 2y = 5 is x + 2y + k = 0(i) Given equation of lines are x + y = 2(ii) x - y = 0(iii) Adding (ii) and (iii), we get $2x = 2 \Rightarrow x = 1$ From (iii), we get y = 1
- ... Point of intersection is (1, 1). Putting x = 1, y = 1 in (i), we get k = -3
- \therefore the required equation of line is x + 2y = 3.
- 57. The lines passing through the intersection of the lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 is $ax + 2by + 3b + \lambda(bx - 2ay - 3a) = 0$ $\Rightarrow (a + b\lambda)x + (2b - 2a\lambda)y + 3b - 3\lambda a = 0 \dots(i)$ Line (i) is parallel to X-axis,

$$a + b\lambda = 0 \Longrightarrow \lambda = \frac{-a}{b}$$

Putting the value of λ in (i), we get $ax + 2by + 3b - \frac{a}{b}(bx - 2ay - 3a) = 0$ $\Rightarrow y\left(2b+\frac{2a^2}{b}\right)+3b+\frac{3a^2}{b}=0$ $\Rightarrow y\left(\frac{2b^2+2a^2}{b}\right) = -\left(\frac{3b^2+3a^2}{b}\right)$ $\Rightarrow y = \frac{-3(a^2 + b^2)}{2(b^2 + a^2)} = \frac{-3}{2}$ So, it is 3/2 unit below X-axis. 58. Here, $m_1 = -\cot \alpha$, $m_2 = \tan \beta$ $\tan \theta = \left| \frac{-\cot \alpha - \tan \beta}{1 - \cot \alpha \tan \beta} \right|$.. $\tan \theta = -\cot(\alpha - \beta)$... $\theta = \frac{\pi}{2} - \beta + \alpha$ • The point of intersection of the lines 59. 3x + y + 1 = 0 and 2x - y + 3 = 0 are $\left(\frac{-4}{5}, \frac{7}{5}\right)$. The equation of line which makes equal intercepts with the axes is x + y = a. $-\frac{4}{5}+\frac{7}{5}=a \Rightarrow a=\frac{3}{5}$:. the required equation of the line is $x+y-\frac{3}{5}=0$ i.e., 5x+5y-3=0x - 3y = 160.(i) and $x^2 - 4y^2 = 1$(ii) On solving (i) and (ii), we get A(1,0) and B $\left(-\frac{13}{5},-\frac{6}{5}\right)$ These are the points of intersection of the straight line and hyperbola. Length of straight line intercepted by the ... hyperbola $=\sqrt{\left(-\frac{13}{5}-1\right)^2+\left(-\frac{6}{5}\right)^2}$ $=\sqrt{\left(-\frac{18}{5}\right)^2 + \left(-\frac{6}{5}\right)^2} = \sqrt{\frac{324 + 36}{25}}$

$$\sqrt{(5)}$$
 (5) $\sqrt{2}$
= $\sqrt{\frac{360}{25}} = \frac{6}{5}\sqrt{10}$ units

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

- 61. The point of intersection of the given lines are (-1, 1), (1, -1) and (2/3, 2/3) which is the vertices of an isosceles triangle.
- Let the point be (h, 0), then $a = \left| \frac{bh+0-ab}{\sqrt{a^2+b^2}} \right|$ 62. \Rightarrow bh = $\pm a\sqrt{a^2 + b^2} + ab$ $\Rightarrow h = \frac{a}{h} (b \pm \sqrt{a^2 + b^2})$ Hence, the points are $\left\{\frac{a}{b}(b\pm\sqrt{a^2+b^2}),0\right\}$.
- Here, the lines are 3x + 4y 9 = 0 and 63. 6x + 8y - 15 = 0 or $3x + 4y - \frac{15}{2} = 0$.
 - Required distance = $\left| \frac{-9 \left(\frac{-15}{2}\right)}{\sqrt{3^2 + 4^2}} \right| = \left| \frac{-3}{10} \right| = \frac{3}{10}$

64. The line is
$$4x - 3y - 12 = 0$$
.
 \therefore Required length $= \left| \frac{-12}{\sqrt{4^2 + (-3)^2}} \right| = \frac{12}{5} = 2\frac{2}{5}$

P(x, y)

65. From option (C),

(1, 1)A
BP =
$$\sqrt{(5-3)^2 + (7+2)^2}$$

= $\sqrt{4+81} = \sqrt{85}$

Hence, option (C) is correct.

Let p be the length of the perpendicular from 66. the vertex (2, -1) to the base x + y = 2.

Then,
$$\mathbf{p} = \left| \frac{2 - 1 - 2}{\sqrt{1^2 + 1^2}} \right| = \frac{1}{\sqrt{2}}$$

If 'a' is the length of the side of triangle, then $p = a \sin 60^{\circ}$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{a\sqrt{3}}{2}$$
$$\Rightarrow a = \sqrt{\frac{2}{3}}$$

67. Distance between lines -x + y = 2 and x-y=2 is $\alpha = \left|\frac{2+2}{\sqrt{2}}\right| = 2\sqrt{2}$ (i)

Distance between lines 4x - 3y = 5 and 6y - 8x = 1 is

$$\beta = \frac{5 - \left(\frac{-1}{2}\right)}{5} = \frac{11}{10} \qquad \dots (ii)$$

From (i) and (ii), we get $\frac{\alpha}{\beta} = \frac{2\sqrt{2}}{11/10}$ $\Rightarrow 20\sqrt{2\beta} = 11\alpha$

68.
$$L = 2x + 3y - 4 = 0;$$

 $L_{(-6,2)} = -12 + 6 - 4 < 0$
 $L' = 6x + 9y + 8 = 0;$
 $L'_{(-6,2)} = -36 + 18 + 8 < 0$

Hence, the point is below both the lines.

69.
$$GAD = \left| \frac{-2-2-1}{\sqrt{(2)^2 + (-1)^2}} \right| = \left| \frac{-5}{\sqrt{5}} \right| = \sqrt{5}$$

Since, $\tan 60^\circ = \frac{AD}{BD}$
 $\Rightarrow \sqrt{3} = \frac{\sqrt{5}}{BD}$
 $\Rightarrow BD = \sqrt{\frac{5}{3}}$
 $BC = 2BD$
 $= 2\sqrt{\frac{5}{3}} = \sqrt{\frac{20}{3}}$
70. $L_{12} = x - 3y + 1 = 0$
 $L_{12} = 2x + y - 12 = 0$

 $\equiv 2x + y$

 $L_{13} \equiv 3x - 2y - 4 = 0$

Therefore, the required distances are

$$D_{3} = \left| \frac{4 - 3 \times 4 + 1}{\sqrt{10}} \right| = \frac{7}{\sqrt{10}}$$
$$D_{1} = \left| \frac{4 + 1 - 12}{\sqrt{5}} \right| = \frac{7}{\sqrt{5}}$$
$$D_{2} = \left| \frac{3 \times 5 - 2 \times 2 - 4}{\sqrt{9 + 4}} \right|$$
$$= \frac{7}{\sqrt{13}}$$

71. Gradient of BC = -1 and its equation is Since x + y = 4 and 2x + 2y = 5 are parallel. 75. Take (4, 0) on the line x + y = 4. x + y + 4 = 0. Therefore, the equation of line Distance of (4, 0) from the line 2x+2y-5=0parallel to BC is $x + y + \lambda = 0$. $\frac{|2.4+2.0-5|}{\sqrt{2^2+2^2}} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4} > 1$ Also, it is $\frac{1}{2}$ unit distant from origin. Thus, $\frac{\lambda}{\sqrt{2}} = \frac{1}{2} \Rightarrow \lambda = \frac{\sqrt{2}}{2}$ Both lines are parallel and at a distance greater ... than unity. There is no point on the line x + y = 4. *.*.. Hence, the required equation of line is $2x + 2v + \sqrt{2} = 0$ 76. Given equation of parallel lines are x - y + a = 0, x - y + b = 072. Line L passes through (13, 32). required distance = $\left| \frac{a-b}{\sqrt{(1)^2 + (-1)^2}} \right| = \frac{|a-b|}{\sqrt{2}}$ $\frac{13}{5} + \frac{32}{b} = 1$. *:*.. $\Rightarrow b = -20$ So, equation of L is $\frac{x}{5} - \frac{y}{20} = 1 \Rightarrow 4x - y = 20$ Slope of given line ax + by + c = 0 is $-\frac{a}{b}$. 77. Slope of L is $m_1 = 4$. $-\frac{a}{b} = \pm 1 \Longrightarrow a = \pm b \qquad \dots (i)$ Slope of $\frac{x}{c} + \frac{y}{3} = 1$ is $m_2 = -\frac{3}{c}$ Distance of line ax + by + c = 0 from (1, -2) $=\frac{|a-2b+c|}{\sqrt{a^2+b^2}}$ $\Rightarrow -\frac{3}{2} = 4$ Distance of line ax + by + c = 0 from (3, 4) $\Rightarrow c = -\frac{3}{4}$ $=\frac{|3a+4b+c|}{\sqrt{a^2+b^2}}$ Equation of line K is $-\frac{4x}{2} + \frac{y}{2} = 1$ According to the given condition, $\frac{|a-2b+c|}{\sqrt{a^2+b^2}} = \frac{|3a+4b+c|}{\sqrt{a^2+b^2}}$ $\Rightarrow 4x - y = -3$ Distance between L and K is $\left|\frac{20+3}{\sqrt{16+1}}\right| = \frac{23}{\sqrt{17}}$ \Rightarrow 3a + 4b +c = ±(a - 2b + c) \Rightarrow a + 3b = 0 (taking +ve)(ii) Equation of straight line parallel to 4x - 3y = 573. \Rightarrow 2a + b + c = 0 (taking-ve)(iii) is $4x - 3v = \lambda$ From, (i) and (ii), we get a = b = 0 which is not According to the given condition, possible so taking (i) and (iii), (taking a = -b) $\frac{4(-1)-3(-4)-\lambda}{\sqrt{16+9}}=\pm 1$ we get $\mathbf{a} + \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{c} = -\mathbf{a}$ a:b:c=a:-a:-a=1:-1:-1 $\Rightarrow 8 - \lambda = \pm 5$ or a = 1, b = -1, c = -1 $\Rightarrow \lambda = 3.13$ From (i) and (iii) (taking a = b), we get the equation of one of the lines is ... $3a + c = 0 \Rightarrow c = -3a$ 4x - 3y - 3 = 0a:b:c=a:a:-3a=1:1:-374. Given, equation of line is option (B) is the correct answer. 4 $\frac{x\sin\alpha}{b} - \frac{y\cos\alpha}{a} - 1 = 0$ 78. Equation of the line is $y-0=\left(\frac{3-0}{-5}\right)(x-5)^{-1}$ perpendicular distance from origin ... $= \left| \frac{0.\frac{\sin \alpha}{b} - \frac{0.\cos \alpha}{a} - 1}{\sqrt{\frac{\sin^2 \alpha}{1 + 2} + \frac{\cos^2 \alpha}{2}}} \right| = \frac{|ab|}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}}$ \Rightarrow 3x + 5v - 15 = 0 $\therefore \quad \mathbf{d} = \left| \frac{3(4) + 5(4) - 15}{\sqrt{3^2 + 5^2}} \right| = \frac{17}{\sqrt{34}} = \sqrt{\frac{17}{2}}.$

38

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448