12

Sets, Relations and Functions

3.

<u>Formulae</u>

<u>Sets</u> :

- A set is well defined class or collection of objects. A set is described in the following two ways:
 - i. Roster or Tabulation or Enumeration method
 - ii. Set Builder or Rule or Property method.

2. Types of sets:

- Null set or Empty set: It is denoted by φ or { }
 - a. ϕ is unique
 - b. ϕ is subset of every set
 - c. ϕ is never written within brackets

i.e., $\{\phi\}$ is not the null set.

- ii. Singleton set : The set { φ } is a singleton set.
- iii. Finite set: A = (a, e, i, o, u) is a finite set.
 a. Cardinal number of a finite set: It is denoted by n(A) or o(A)
- iv. Infinite set:
 - $A = \{1, 2, 3, 4,\}$ is an infinite set.
- v. Equivalent set: Two finite sets A and B are equivalent if fn(A) = n(B)
- vi. Equal sets:

Two sets A and B are equal iff A = B

- vii. Universal set: Superset of all the sets. It is usually denoted by Q or S or U or X.
- viii. **Power set:** The family of all the subsets of set S is called the power set of S.
 - It is denoted by P(S) i.e.,

$$P(S) = \{ T : T \subseteq S \}$$

ix. Subsets: If A is subset of B, then

 $A \subseteq B \Longrightarrow a \in A \Longrightarrow a \in B$

- a. Every set is a subset of itself i.e.,
 - $A \subseteq A$
- b. ϕ is a subset of every set.
- MATHEMATICS XI OBJECTIVE

- c. If $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$
- d. A = B iff $a \subseteq B$ and $B \subseteq A$

Proper Subsets:

If A is a proper subset of B, then $A \subset B$.

- a. If $A \subseteq B$, we may have $B \subseteq A$
- b. But if $A \subset B$, we cannot have $B \subset A$.
- **Operations on Sets:**
 - i. **Union of sets:** Let A and B be two sets. Then, $A \cup B$

$$= \{ x : x \in A \text{ or } x \in B \}$$

$$A \subseteq A \cup B, B \cup A$$

and
$$\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}$$

ii. Intersection of sets: Intersection of two sets A and B is denoted by $A \cap B$

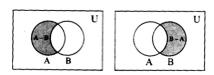
$$\{x: x \in A \text{ and } x \in B\}$$

$$A \cap B \subseteq A, A \cap B \subseteq B \text{ and}$$
$$A \cap B = B \cap A$$

- iii. **Disjoint sets:** Two sets A and B are s.t.b disjoint if $A \cap B = \phi$
- iv. **Difference of sets:** Let A and B be two sets, then $A - B = \{x : x \in A \text{ and } x \in B\}$ and

 $B - A = \{x : x \in B \text{ and } x \in A\}$

Sets, Relations and Functions



- a. $A B \neq B A$
- b. The sets A B, B A and $A \cap B$ are disjoint sets.
- $c. \quad A-B \subseteq A \text{ and } B-A \subseteq B$
- d. $A \phi = A$ and $A A = \phi$ It is denoted by A - B or $A \sim B$ or $A \setminus B$ or $C_A B$ (complement of B in A).
- v. Symmetric difference of two sets: is denoted by A Δ B = (A – B) \cup (B – A) = (A \cup B) – (A \cap B)
 - Complement of a set:

The complement of A with respect to U is denoted by A' or A^c or C(A) or U - A

i.e., $A' = \{x \in U : x \notin A\}$

- 4. If X is the universal set and A, $B \subseteq X$, then
 - i. (A')' = A
 - ii. $X' = \phi$

vi.

- iii. $\phi' = X$
- iv. $A \cap A' = \phi$
- $v. \quad A \cup A' = X$
- vi. If $A \subseteq B$, then $B' \subseteq A'$
- 5. If A, B, C are subsets of universal set X, then for

	<u>Union of sets</u>	Intersection of sets
i.	$A \cup \phi = A$	$A \cap \phi = \phi$
ii.	$A \cup X = X$	$A \cap X = A$
iii.	$A \cup B = B \cup A$	$A \cap B = B \cap A$
iv.	$(A \cup B) \cup C$	$(A \cap B) \cap C$
	$= A \cup (B \cup C)$	$= A \cap (B \cap C)$
V.	$A \cup A = A$	$A \cap A = A$
vi.	$A \subseteq B$	$A \subseteq B$
	\Rightarrow A \cup B = B	\Rightarrow A \cap B = A

MATHEMATICS - XI OBJECTIVE

- Distributive Properties of union and 6. intersection : i $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ ii. 7. **De-Morgan's laws:** i. $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$ ii. iii. $A - (B \cap C) = (A - B) \cup (A - C)$ $A - (B \cup C) = (A - B) \cap (A - C)$ iv. 8. If A, B and C are any three sets, then i. $A \cap (B - C) = (A \cap B) - (A \cap C)$ $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$ ii. $P(A) \cap P(B) = P(A \cap B)$ iii. $P(A) \cup P(B) = P(A \cup B)$ iv. If $P(A) = P(B) \Rightarrow A = B$ v where, P(A) is the power set of A. 9. More Results on operations on sets: For any sets A and B, we have i. $A \subseteq A \cup B, B \subseteq A \cup B, A \cup B \subseteq A,$ $A \cap B \subseteq B$ $A - B = A \cap B', B - A = B \cap A'$ ii. $(A - B) \cap B = \phi$ iii. $(A-B) \cup B = A \cup B$ iv. v $A \subseteq B \Leftrightarrow B' \subseteq A'$ vi. A - B = B' - A'vii. $(A \cup B) \cap (A \cup B') = A$
 - viii. $A \cup B = (A B) \cup (B A) \cup (A \cap B)$
 - ix. $A (A B) = A \cap B$
 - x. $A B = B A \iff A = B$ and

$$\mathbf{A} \cup \mathbf{B} = \mathbf{A} \cap \mathbf{B} \Longrightarrow \mathbf{A} = \mathbf{B}$$

- **10. Results on cardinal number of some sets:** If A, B and C are finite sets and U be the universal set, then
 - i. $n(A \cup B) = n(A) + n(B)$ if A and B are disjoint sets.
 - ii. $n(A \cup B) = n(A) + n(B) n (A \cap B)$
 - iii. $n(A \cup B) = n(A B) + n(B A) + n(A \cap B)$

166

\bigcirc		Sets, Relations	s and	Functions 167
	iv.	$n(A) = n(A - B) + n(A \cap B)$		v. If $A \subseteq B$, then $(A \times B) \cap (B \times A) = A^2$
		$n(B) = n(B - A) + n(A \cap B)$		vi. If $A \subseteq B$ and $C \subseteq D$ then $A \times C \subseteq B \times D$
		Here $n(A-B) = n(A) - n(A \cap B)$		vii. $(A \times B) \cap (S \times T) = (A \cap S) \times (B \cap T)$,
		and $n(A-B) = n(A \cup B) - n(B)$		where S and T are two sets.
	V.	n(A') = n(U) - n(A)	2.	Relation:
	vi.	$n(A' \cap B') = n(A \cap B)'$		If R is a relation from A to B then $R \subseteq A \times B$
	vii.	$n(A' \cap B') = n(A \cap B)' = n(U) - n(A \cap B)$	3.	i.e., $R \subseteq \{(a,b):a \in A, b \in B\}$ Number of possible relations from A to B
	viii.	$n(A \cap B') = n(A) - n(A \cap B)$		$= 2^{mn} [if o(A) = m and o(B) = n]$
	ix.	$n(A \cap B) = n(A \cup B) - n(A \cap B')$	4.	Domain and Range of a Relation: i. Domain of $R = (a : (a, b) \in R)$
		$-n(A' \cap B)$		ii. Range of $R = \{b : (a, b) \in R\}$
	X.	$n(A \cup B \cup C)$		If R is a relation from A to B,
		$= n(A) + n(B) + n(C) - n(A \cap B)$		then Dom (R) \subseteq A and Range (R) \subseteq B (i.e., Co-domain)
		$-n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$	5.	Inverse Relation:
	xi.	If $A_1, A_2, A_3, \dots, A_n$ are disjoint sets, then $n(A_1) \cup A_2 \cup A_3, \dots, \cup A_n$		The inverse of R, denoted by R^{-1} is a relation from B to A and is defined by
		$= n(A_1) + n(A_2) + n(A_3) \dots + n(A_n)$	7	$R^{-1} = \{(b, a) : (a, b) \in R\}$ Thus,
	xii.	$n(A\Delta B) = n(A) + n(B) - 2n(A \cap B)$		$i - (a, b) \in R \Leftrightarrow (b, a) \in R^{-1} \forall a \in A,$
	xiii.	$n(A \cap B' \cap C')$	D	$b \in B$
		$= n(A) - n(A \cap B) - n(A \cap C)$	1	ii. Dom $(\mathbb{R}^{-1}) = \text{Range}(\mathbb{R})$
		$= n(A) - n(A \cap B) - n(A \cap C)$		iii. Range $(R^{-1}) = Dom (R)$ iv. $(R^{-1})^{-1} = R$
		$+n(A \cap B \cap C)$	6.	Equivalence Relation:
		$n(B \cap A' \cap C')$		A relation R on a set 'A' is said to be
		$= n(B) - n(B \cap C) - n(B \cap A)$		equivalence relation on a iff i. It is reflexive i.e.,(a, a) ∈ R ∀ a ∈ A
				ii. It is symmetric i.e., $(a, b) \in \mathbb{R}$
		$+n(A \cap B \cap C)$		$\Rightarrow (b, a) \in R \ \forall \ a, b \in A$
		$n(C \cap A' \cap B')$		iii. It is transitive $(-1) = P$
		$= n(C) - n(C \cap A) - n(C \cap B)$		i.e., $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow (a, c) \in R \forall a, b, c, \in A$
		$+n(A \cap B \cap C)$		iv. It is antisymmetric i.e., $(a, b) \in \mathbb{R}$ and
		ations :	_	$(b, a) \in \mathbb{R}$, then $a = b$.
1.		rtesian Product of sets :	7.	Composition of two Relations: If A, B and C are three sets such that $R \subseteq A \times B$ and $S \subseteq$
		$B = \{(a, b) : a \in A \text{ and } b \in B\}. \text{ If } A, B \text{ and}$ re three sets then,		$B \times C$, then SoR $\subseteq A \times C$ and $(SoR)^{-1} = R^{-1}$
	i.	$A \times (B \cup C) = (A \times B) \cup (A \times C)$		¹ oS ⁻¹ . It is clear that aRb, bSc \Rightarrow a(SoR)c Functions:
	ii.	$\mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$	1.	$f: X \to Y : \Rightarrow f$ is a function from set X to set
	iii.	$\mathbf{A} \times (\mathbf{B} - \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) - (\mathbf{A} \times \mathbf{C})$		Y, if to each element $x \in X$, \exists a unique element $y \in Y$.
	iv.	If $A \subseteq B$, then $(A \times C) \subseteq (B \times C)$	2.	Domain and Range:
_				i. Domain : All possible values of x for which

MATHEMATICS - XI OBJECTIVE

Sets, Relations and Functions

f(x) exists. ii. Range : All possible values of f(x), for all values of x. i.e., $R_f = \{y \in Y : y = f(x)\}$

 $R_f \subseteq$ Co-domain iii.

3. One-One function or Injection:

A function $f: X \rightarrow Y$ is one-one iff

 $x \neq y$ i.

 \Rightarrow f(x) \neq f(y)

f(x) = f(y)ii. $\Rightarrow x = y$

4. Onto function or Surjection:

A function $f: X \rightarrow Y$ is onto iff Range of f = Co-domain of f.

5. Into Function:

A function f: $X \rightarrow Y$ is an into function, if there exists an element in Y having no pre-image in X.

6. Many-One function:

- $f: X \rightarrow Y$ is a many-one function, if x,
- $\exists x, y \in X$ such that $x \neq y$, but f(x) = f(y)
- 7. Bijective function:

A function both injective and surjective is called bijective function.

8. Inverse of a function:

If $f: X \rightarrow Y$ be a one-one, onto function, then the mapping $f^{-1}: Y \rightarrow X$ such that $f^{-1}(y) = x$ is called inverse of the function f: $X \rightarrow Y$.

- 9. Modulus or Absolute value or Numerical function:
 - |x| = x if x > 0= -x if x < 0= 0 if x = 0for $f: R \rightarrow R$, $D_{e} = R$, $R_{E} = R^{+}$
- 10. Signum function:

$$sign(x) = \frac{|x|}{x} if \ x \neq 0$$

= 0 if x = 0
Or, sign (x) = 1 if x > 0
= -1 if x < 0
= 0 if x = 0
For f: R \rightarrow R, D_f = R
R_f = {-1, 0, 1}
The Greatest Integer function or s

11. tep g

MATHEMATICS - XI OBJECTIVE

function or floor function: $\forall x \in R$ Let [x] denotes the greatest Integer in Х. [x] = x when $x \in I$ i. ii. [x] = 0 when $0 \le x \le 1$ iii. [x] < x when $x \notin I$ iv. [x] = k when $k \le x < k + 1$, if $x \in I$ $[x] \le x < [x] + 1$ v 12. Even and Odd Function: Even function: i If $f(-x) = f(x) \quad \forall x \in \text{domain}$ Odd function: ii If $f(-x) = -f(x) \quad \forall x \in \text{domain}$ 13. Periodic function: A function f(x) is s.t.b periodic function if f(x +T) = f(x) $\forall x \in$ domain. Here the least + ve value of T is called the period of the function. **14. Operations on functions:** (f + g)(x) = f(x) + g(x)i. (f - g)(x) = f(x) - g(x)ii. (f.g)(x) = f(x).g(x)iii. $(f/g)(x) = \frac{f(x)}{g(x)}; g(x) \neq 0$ iv. (kf)(x) = kf(x)V. 15. Some special functions: i. if f(x + y) = f(x) + f(y), then f(x) = kxii. if f(xy) = f(x) + f(y), then $f(x) = \log x$ iii. if $f(x + y) = f(x) \cdot f(y)$, then $f(x) = e^{x}$ iv. if $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$, then $f(x) = x^n \pm 1$ Shortcuts If A has n elements, then P(A) has 2^n elements. 1. 2 The total number of subsets of a finite set containing n elements is 2ⁿ. 3. Number of proper subsets of A, containing n elements is $2^n - 1$. Number of non-empty subsets of A, containing n 4.

5. Number of elements in exactly two of the sets A, B and C

elements is $2^n - 1$

168

Sets, Relations and Functions

$$= n(A \cap B) + n(B \cap C) + n(C \cap A)$$

$$-3n(A \cap B \cap C)$$

Number of elements in exactly one of the sets 6. A, B and C.

$$= n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C)$$

$$-2n(A \cap C) + 3n(A \cap B \cap C)$$

7. Number of elements which belong to exactly one of A or B

i.e., $n(A\Delta B) = n(A) + n(B) - 2n(A \cap B)$

- 8. The idnetiry relation on a set A is an anti-symmetric relation.
- 9. The relation is 'congruent to' on the set T of all triangles in a plane is a transitive relation.
- 10. If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.
- 11. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- 12. The inverse of an equivalence relation is an equivalence relation.
- 13. The number of functions from a finite set A into a finite set $B = [n(B)]^{n(A)}$
- 14. The number of one-one functions that can be defined from a set A into a finite set B is $^{n(B)}P_{n(A)}$; ifn(B) $\geq n(A)$ 0
 - ; otherwise
- 15. The number of onto functions, that can be defined from a finite set A, containing n elements onto a finite set B, containing 2 elements = $2^n - 2$
- 16. The number of onto functions from A to B where, o(A) = m, o(B) = n and $m \ge n$ is

$$\sum_{r=1}^{n} (-1)^{n-r} {}^{n}C_{r} r^{m}$$

17. The number of bijections from a finite set A onto a finite set B is

n(A)!; if n(A) = n(B)

18. If
$$o(A \cap B) = n$$
 then

 $o[(A \times B) \cap (B \times A)] = n^2$

- 19. If any line parallel to X-axis, cuts the graph of the function almost one point, then function is one-one.
- 20. If there is even a single line parallel to X-axis, cuts the graph of the function atleast two points, then function is many-one.
- 21. For, Domain and Range: If function is in the form:

i.
$$\sqrt{f(x)}$$
, take $f(x) \ge 0$
ii. $\frac{1}{\sqrt{f(x)}}$, take $f(x) > 0$

iii.
$$\frac{1}{f(x)}$$
, take $f(x) \neq 0$

22. **Periodic functions**

Functions	Period
$\sin^n x, \cos^n(x);$ if (n = even)	π
sec ⁿ x, cosec ⁿ x; (if n is odd and fraction)	2π
sin x , cos x , tan x , cot x , cos ecx , sec x	π
$x - x , \sin(x - [x]), \sin(x - [-x]), x - [-x]$	1
$\sin^{-1}(\sin x), \cos^{-1}(\cos x)$	2π
$\left(\frac{1}{2}\right)^{\sin x}, \left(\frac{1}{2}\right)^{\cos x}, \left(\frac{1}{2}\right)^{\sin x} + \left(\frac{1}{2}\right)^{\cos x}$	2π
$\sqrt{\cos x}, \sqrt{\frac{1+\cos x}{2}}$	2π
$(\sin x) + \cos x), \sin^4 x + \cos^4 x$	$\frac{\pi}{4}$
$\cos x + \cos \frac{\pi}{2} + \cos \left(\frac{x}{2^2} \right) + \cos \left(\frac{x}{2^3} \right) \dots \dots$ $\cos \left(\frac{x}{2^{n-1}} \right) + \cos \left(\frac{x}{2^n} \right)$	2 ⁿ π
$\cos(\cos x) + \cos(\sin x)$	$\frac{\pi}{2}$
$\sin(\sin x) + \sin(\cos x)$	2π
$\frac{ \sin x + \cos x }{ \sin x + \cos x } = \frac{\left \sqrt{2}\sin\left(x + \frac{n}{4}\right)\right }{ \sin x + \cos x }$	π
$2^{\sin x} + 2^{\cos x}$	2π

MATHEMATICS - XI OBJECTIVE

169

Sets, Relations and Functions

 \bigcap

170

\bigcirc	Sets, Relations and Functions				
	MULTIPLE CHO	ICE	QUESTIONS		
1.	Classical Thinking12.1 SetsIf B is the set whose elements are obtained byadding 1 to each of the even numbers, then theset builder notation of B isa) B = {x : x is even}b) B = {x : x is odd and x > 1}	9.	If A, B, C are any three sets, then $A \cup (B \cap C)$ is equal to a) $(A \cup B) \cap (A \cup C)$ b) $(A \cup B) \cup (A \cup C)$ c) $(A \cap B) \cap (A \cap C)$ d) none of these		
2. 3.	c) $B = \{x : x \text{ is odd and } x \in I\}$ d) $B = \{x : x \text{ is an integer}\}$ $A \cup B = A \text{ if}$ a) $A \subset B$ b) $B \subset A$ c) $A = B$ d) $A \cap B = \phi$ If A and B are finite sets (non-empty), then		If $A = \{2x/x \in N\}$ and $B = \{4x/x \in N\}$, then $A \cup B =$ a) $\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ b) $\{4, 8, 12, 16, 20\}$ c) $\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ d) $\{4, 8, 12, 16, 20\}$ (A i i D) is smaller		
	number of elements in A x B isa) $n(A \cup B)$ b) $n(A \cap B)$ c) $n(A) \times n(B)$ d) none of these	11.	a) $A' \cup B'$ b) $A' \cap B'$ c) $A \cap B$ d) $A \cup B$		
4.	If $A = \{1,2,3\}, B = \{3,4,5\}, C = \{4,5,6\}, \text{ then}$ $A \cup B \cup C =$ a) $\{1,2,3,4,5,6\}$ b) $\{3\}$ c) $\{1,2,3,4,5\}$ d) $\{1,3,5\}$		Let $X = \{a, b, c, p, q, r, x, y, z\}$, $A = \{b, q, y\}, B = \{a, p, r, x, y]$ then $(A \cap B)'$ a) $\{a, b, c, p, q, r, x, z\}$ b) $\{a, c, p, r, x, z\}$		
5.	$A \subseteq B$ and $B \subseteq C$, thena) $B \subseteq A$ b) $C \subseteq A$ c) $C \subseteq B$ d) $A \subseteq C$	13.	 c) {b, c, q, z} d) {a, b, p, q, x, z} If Q is the set of rational numbers and P is the set of irrational numbers, then 		
6.	Which of the following is a true statement ?a) $O \in \{\}$ b) $0 \in \{\{0\}\}$ c) $O \in \{0\}$ d) $O \in \{0\}$		a) $P \cap Q = \phi$ b) $P \subset Q$ c) $Q \subset P$ d) $P - Q = \phi$		
7.	A-(B \cup C) is equal to a) (A-B) \cup (A-C) b) (A \cup B)-(A \cup C) c) (A-B)-(A-C)		The set of all prime numbers is a) a finite set b) a singleton set c) an infinite set d) a null set Two sets A and B are disjoint iff a) $A \cup B = \phi$ b) $A \cap B = \phi$		
8.	d) $(A-B) \cap (A-C)$ Let $X = \{x/x \in N, I \le x \le 8\}, A = \{1,2,3\},$ $B = \{2,4,6\}, C = \{1,3,5,7\}, \text{then } A' = a$ a) $\{1,3,5,7,8\}$ b) $\{4,5,6,7,8\}$ c) $\{2,4,6,8\}$ d) $\{4,5,7,8\}$	16.	c) $A-B = \phi$ d) $B-A = \phi$ If A, B, C are any three sets, then $A \times (B \cup C)$ is equal to a) $(A \times B) \cup (A \times C)$ b) $(A \times B) \cap (A \times C)$ c) $A \times B - A \times C$ d) $A \times (B - C)$		

7

		Sets, Relation	s and	Functions 171
17.	Let X= {1,2, 3,4, 5,	6, 7, 8, 9}	26.	If $A = \{x \mid x \text{ is a multiple of } 2, x \in N\},\$
	$A = \{2, 4, 5, 7, 3\}$	B , B = {1, 3, 5, 7},		$B = \{x \mid x \text{ is a multiple of 5, } x \in N\},\$
	$C = \{4, 6, 8, 9\}, the$	$n A \cap (B \cup C)$		$C = \{x \mid x \text{ is a multiple of } 10, x \in N\}, \text{ then}$
	a) $A \cap (B \cap C)$			$(A \cap B) \cap C =$
	b) $A \cup (B \cap C)$			a) {5, 15, 25,} b) {10,15,20,}
	c) (A \cap B) \cup (A	∩ C)		c) $\{5,10,15,20,\}$ d) $\{10,20,30,\}$
	d) (A \cup B) \cup (A		27.	If $n(A) = 10$, $n(B) = 6$ and $n(C) = 5$ for three
18.		students, 60 play cricket,		disjoint sets A, B, C, then n (A \cup B \cup C) equals
		and 28 play both. Find the who play atleast one of the		a) 11 b) 21
	two games.	who play alleast one of the		c) 1 d) 9
	a) 18	b) 32	28.	Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
	c) 110	d) 82		$A = \{2, 4, 5, 7, 8\}, B = \{1, 3, 5, 7\},\$
9.	If $A = \{x x \text{ is a natural} \}$	· · · · · · · · · · · · · · · · · · ·		$C = \{4, 6, 8, 9\}, \text{ then } A \cup (B \cap C) =$
	$B = \{x \mid x \text{ is an even} \}$			a) $(A \cup B) n (A \cup C)$
	$A \cap B =$			b) A \cap (B \cup C)
		b) $\{1, 3, 5, 7\}$		c) $(A \cap B) \cup (A \cap C)$
	c) $\{2, 4, 6, 8,\}$		20	d) $(A \cup B) \cup (A \cup C)$
		u) (1, 5, 5, 7,)	29.	A – B is equal to a) $(A \cup B) – (A \cap B)$
20.	$A - B = \phi$ iff		7	b) $A \cap B'$
	a) $A \subset B$	b) $B \subset A$		 c) A ∩ B
	c) $A = B$	d) $A \cap B = \phi$	D	d) $B - A$
21.	$A \cap B = iff$		11	
	a) $A \subset B$	b) B⊂A	12	12.2 Relations
	c) $A = B$	d) $A \cap B = \phi$	30.	If $A = \{x : x^2 - 5 x + 6 = 0\}, B = \{2, 4\},\$
	,	,		C = $\{4, 5\}$, then A × (B \cap C) is
22.	If $B = \{x \mid x \text{ is an } e \}$			a) $\{(2,4), (3,4)\}$
		odd number}, then $B \cap C =$		b) $\{(4, 2), (4, 3)\}$
	a) 4	b) {2,4,6,8}		c) $\{(2, 4), (3, 4), (4, 4)\}$
	c) $\{1,3,5,7,\}$	d) {0}		d) $\{(2, 2), (3, 3), (4, 4), (5, 5)\}$
23.		ich that A has 25 members,	31.	$Y = \{1, 2, 3, 4, 5\}, A = \{1, 2\}, B = \{3, 4, 5\} and \phi$
		and $A \cup B$ has 35 members.		denote the null set. If $A \times B$ denotes the cartesian
		the set $A \cap B$ is		product of sets A and B, then $(Y \cup A) = (Y \cup B)^{\perp}$
	a) 10	b) 5		$(Y \times A) \cap (Y \times B)$ is
	c) 15	d) 20		a) Y b) A
24.	If A and B are disjoin	nt, then $n(A \cup B)$ is equal to		c) B d) ¢
	a) n(A)	b) n(B)	32.	If $A = \{0, 1\}$ and $B = \{1, 0\}$, then $A \times B =$
	c) $n(A) + n(B)$	d) n(A). n(B)		a) $\{(0,1), (1,0)\}$ b) $\{(0,0), (1,1)\}$
25.		n a family, 11 like to take tea		c) $A \times A$ d) $\{(0, 1), (0, 0), (1, 1)\}$
		Assume that each one likes	33.	If A= $\{1,2\}$ and B= $\{0, 1\}$, then A × B =
		two drinks. How many like		a) $\{(1,0), (1,1), (2,0), (2,1)\}$
	only tea and not cot			b) $\{(1,0), (2,1)\}$
	a) 9	b) 5		c) $\{(1,1), (1,2), (0,1), (0,2)\}$
	c) 11	d) 6		d) $\{(1,0), (2,0), (0,0)\}$

If $n(\Lambda) = 2$, $n(D) = 4$, then $n(\Lambda \times \Lambda \times D)$ is	
If $n(A) = 3$, $n(B) = 4$, then $n(A \times A \times B)$ is	42. Let $R = \{(a, a)\}$ be a relation on a set A. Then R
a) 12 b) 9	is
c) 16 d) 36	a) Symmetric
If $A = \{1, 2, 4\}$, $B = \{2, 4, 5\}$, $C = \{2, 5\}$, then (A	b) Antisymmetric
$(-B) \times (B - C) =$	c) Symmetric and antisymmetric
a) $\{(1,2), (1,5), (2,5)\}$	d) Neither symmetric nor anti-symmetric
b) {(1,4)}	43. In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined
c) (1,4)	by $R = \{(x, y) x, y \in A \text{ and } x < y\}$. Then R is
d) $\{(1,2), (1,4)\}$	a) Reflexive
. If $n(A) = 5$ and $n(B) = 2$. If a, b, c, d, e are	b) Symmetric
distinct and (a, 2), (b, 3), (c, 2), (d, 3), (e, 2) are in A × B, find A and B.	c) Transitive
a) $A = \{a, b, c, d, e\}, B = \{2, 3\}$	d) An equivalence relation
b) $A = \{a, b, d, c, e\}, B = \{3, 1\}$	44. If $R \subset A \times B$ and $S \subset B \times C$ be two relations
c) $A = \{a, b, c, d, e\}, B = \{2, 2\}$	then $(SoR)^{-1} =$
d) $A = \{a, b, c, e, d\}, B = \{3, 3\}$	a) $S^{-1} \circ R^{-1}$ b) $R^{-1} \circ S^{-1}$
. If $A = \{a, b\}$ and $B = \{1, 2, 3\}$ then	c) SoR d) RoS
$(A \times B) \cap (B \times A) =$	12.3 Functions
a) $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$	
b) $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$	45. If a function $f(x)$ is given as $f(x) = x - 3x + 2$ for all $x \in \mathbb{R}$, then $f(-1) =$
c) {(a, a), (b, b), (a, b), (b, a)}	$\begin{array}{c} a & a \\ a & b \\ \end{array} $
	c) 2 d) 8
	46. If a function $f(x)$ is given as $f(x) = x^2 - 3x + 2$
. If $A \times B = \{(a, 1), (a, 5), (a, 2), (b, 2), (b, 5), (b, 1)\},$ then $B \times A =$	for all $x \in \mathbb{R}$, then $f(a + h) =$
a) $\{(a, 1), (a, 5), (a, 2), (b, 2), (b, 5), (b, 1)\}$	a) $a^2 + (2a + 3)h - 3a + 2 + h^2$
b) $\{(1, a), (5, a), (2, a), (2, b), (5, b), (1, b)\}$	b) $a^2 + (2a - 3)h + 3a + 2 + h^2$
c) $\{(1, a), (3, a), (2, a), (2, b), (5, b), (1, b)\}$	c) $a^2 + (2a - 3)h - 3a + 2 + h^2$
d) does not exist	d) $a^2 + (2a + 3)h + 3a + 2 + h^2$
If A, B and C are any three sets, then $A \times (B -$	
C) is equal to $C = C = C = C$	
a) $(A \times B) \cup (A \times C)$	a) 6 b) 17
b) $(A \times B) \cap (A \times C)$	c) 11 d) 5
c) $(A \times B) - (A \times C)$	48. If $f(x) = x^2 - 6x + 5$, $0 \le x \le 4$ then $f(8) =$
d) none of these	a) 5 b) 21
The domain of the relation	c) 11 d) does not exist
$R = \{(1,3), (3,5), (2,6)\}$ is	49. If $f(x) = 3x - 1$, $g(x) = x^2 + 1$ then $f[g(x)] =$
a) 1,3 and 2 b) {1,3,2}	a) $3x^2 + 2$ b) $9x^2$
c) {3,5,6} d) 3,5 and 6	c) $3x^2 - 2$ d) $9x^2$
. If $A = \{1, 2, 3\}, B = \{3, 4, 5\}, \text{ then } (A \cap B) \times A \text{ is}$	50. A function f is said to be even, if
a) $\{(1,3), (2,3), (3,3)\}$	a) $f(x) = -f(x)$
b) $\{(3, 1), (3, 2), (3, 3)\}$	b) $f(-c) f(-x) = -f(x)$
c) $\{(1,3),(3,1),(3,2)\}$	c) $f(-x) = -f(x)$
d) $\{(1,3), (2,4), (3,5)\}$	d) none of these

Sets, Relations and Functions

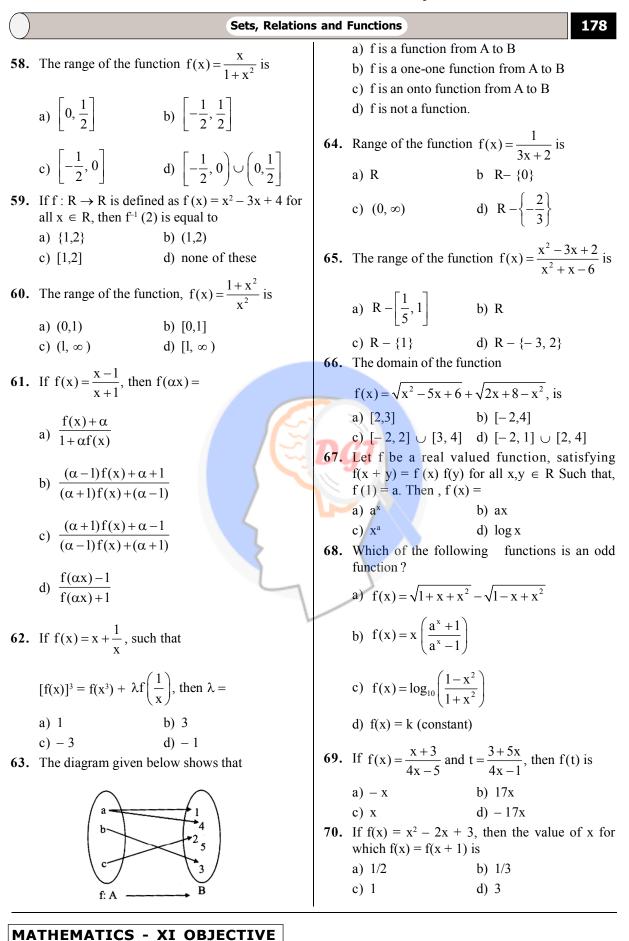
173 **51.** Which of the following is a polynomial function? **59.** If $f(x) = \frac{1}{\sqrt{5x-7}}$, then dom(f) = a) $\frac{x^2 - 1}{x}, x \neq 0$ a) $R - \left\{\frac{7}{5}\right\}$ b) $\left[\frac{7}{5}, \infty\right)$ b) $x^3 + 3x^2 - 4x + \sqrt{2}x^{-2}$ c) $\left\lceil \frac{5}{7}, \infty \right\rceil$ d) $\left(\frac{7}{5}, \infty \right)$ c) $\frac{3x^2 + 7x - 1}{3}$ 60. Find [2.75], if [x] denotes greatest integer not d) $2x^2 + \sqrt{x} + 1$ greater than x ? **52.** If $f(x) = 4x - x^2$, then f(a + 1) - f(a - 1) =a) 2 b) 3 a) 4(2 - a)b) 2(4-a)c) 0.75 d) 1.75 c) 4(2 + a)d) 2(4+a)61. If $f(x) = x^2 + 1$, then the value of (fof) (x) is **53.** The function equal to $f: R \rightarrow R: f(x) = l; if x > 0$ b) $x^4 + 2x^2 + 2$ a) $x^4 + 1$ = 0; if x = 0c) $x^4 + x^2 + 1$ d) none of these = -1; if x < 0 is a 62. The diagram given below shows that a) rational function b) modulus function c) signum function d) sine function 54. If $f(x) = \frac{x-1}{x+1}$, then $f\left(\frac{1}{f(x)}\right)$ equals a) f is a function from A to B b) f is a one-one function from A to B a) 0 b) 1 c) f is a bijection from A to B d) $\frac{1}{-}$ d) f is not a function. c) x 63. If $f(x) = 1 - \frac{1}{x}$, then $f\left(f\left(\frac{1}{x}\right)\right)$ is 55. If $f(x) = x^2$, g(x) = 5x - 6, then g[f(x)] =a) $25x^2 - 60x + 36$ b) $5x^2 + 6$ c) $25x^2 + 60x - 36$ d) $5x^2 - 6$ a) $\frac{1}{x}$ b) $\frac{1}{1+x}$ **56.** If $f(x) = x^2 + \frac{1}{x}$, $x \neq 0$ then $\left(\frac{1}{x}\right) =$ c) $\frac{x}{x-1}$ d) $\frac{1}{x-1}$ 64. If for two functions g and f, gof is both injective a) $\frac{1}{x^2} + x$ b) $\frac{1}{x} + x^2$ and surjective, then which of the following is true? a) g and f should be injective and surjective c) $\frac{1}{x^2} - x$ d) $\frac{1}{x} - x^2$ b) g should be injective and surjective c) f should be injective and surjective 57. Let $f: R \to R$ and $g: R \to R$ be given by d) None of them may be surjective and injective $f(.x) = x^2$ and $g(x) = x^3 + 1$, then (fog) (x) **65.** Domain of function $f(x) = \sin^{-1} 5x$ is b) $x^6 - 1$ d) $(x^3 + 1)^2$ a) $x^6 + 1$ a) $\left(-\frac{1}{5}, \frac{1}{5}\right)$ b) $\left[-\frac{1}{5}, \frac{1}{5}\right]$ c) $(x^3 - 1)^2$ **58.** If $f(x) = x^2 - 6x + 9$, $0 \le x \le 4$, then f(3) =a) 4 b) 1 d) $\left(0,\frac{1}{5}\right)$ c) R c) 0 d) does not exist

	Sets, Relat	ions and	s and Functions 174		
66.	Domain of the function $\log x^2 - 9 $ is		Critical Thinking		
	a) R b) R-[-3, 3]		12.1 Sata		
	c) $R-\{-3,3\}$ d) $\{-3,3\}$		<u>12.1 Sets</u>		
67.	Domain of the function $\sqrt{\log \{(5x - x^2)/6\}}$ is	1.	A - B = B - A if		
	a) (2,3) b) [2,3]		a) $A \subset B$ b) $B \subset A$		
	c) [1,2] d) [1,3]	2.	c) $A \cap B = \phi$ d) $A = B$ Which of the following is the empty set ?		
68 .	Inverse of the function $y = 2x - 3$ is $x + 3$ is	2.	a) {x : x is a real number and $x^2 - 1 = 0$ }		
	x + 3 x - 3		b) {x : x is a real number and $x^2 + 1 = 0$ }		
	a) $\frac{x+3}{2}$ b) $\frac{x-3}{2}$		c) {x : x is a real number and $x^2 - 9 = 0$ }		
	1 1		d) {x : x is a real number and $x^2 = x + 2$ }		
	c) $\frac{1}{2x-3}$ d) $\frac{1}{x+3}$	3.	Which of the following is not true ?		
			a) $(A \cap B) \subset A$ b) $A \subset A \cup B$		
59.	Domain of the function $f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$ is		c) $(A-B) \subset A$ d) $A \subset (A-B)$		
		4.	If $A = \{x/6x^2 + x - 15 = 0\},\$		
	a) $\{x : x \in \mathbb{R}, x \neq 3\}$		$B = \{x/2x^2 - 5x + 3 = 0\} \text{ and}$		
	b) $\{x : x \in R, x \neq 2\}$		$C = \{x/2x^2 - x - 3 = 0\}$, then $A \cap B \cap C =$		
	c) $\{x : x \in R\}$				
	d) $\{x : x \in \mathbb{R}, x \neq 2, x \neq -3\}$	2	a) $\left\{-\frac{5}{3}, \frac{3}{2}\right\}$ b) $\left\{1, \frac{3}{2}\right\}$		
70.	If $f(x) = \frac{3x+4}{5x-7}$, $g(x) = \frac{7x+4}{5x-3}$ then $f[g(x)] =$		c) $\left\{-1, \frac{3}{2}\right\}$ d) $\left\{\frac{3}{2}\right\}$		
	a) – 41 b) x	5.	Let $X = \{x/x \in N, 1 \le x \le 8\}$, $A = \{1,2,3\}$,		
	c) – x d) 41		$B = \{2, 4, 6\}, C = \{1, 3, 5, 7\}, \text{ then } (A \cup B)' =$		
			a) {5,7,8} b) {1,3,5,6,7,8}		
			c) $\{2,4,6,8\}$ d) $\{1,3,5,7,8\}$		
		6.	Which of the following is an empty set ?a) The set of prime numbers which are even.		
			b) The solution set of the equation		
			$\frac{2(2x+3)}{x+1} - \frac{2}{x+1} + 3 = 0, x \in \mathbb{R}$		
			c) $(A \times B) \cap (B \times A)$ where A and B are disjoint.		
			d) The set of reals which satisfy		
			$x^2 + k + i - 1 = 0$		
		7.	A - B is equal to		
			a) $B - A$ b) $A \cup B$		
			c) $A \cap B$ d) $A - (A \cap B)$		
		8.	In a group of 20 adults, there are 8 males and 9 vegetarians. Find the number of female non- vegetarians, if the group contains 5 male vegetarians?		
			a) 4 b) 8		
			c) 12 d) 10		

\bigcirc	Sets, Relation	s and	Functions	175
9.	If $A = \{x \mid x \text{ is a multiple of } 2, x \in N\},\$	17.	If A and B are any two	sets, then
	$B = \{x \mid x \text{ is a multiple of } 5, x \in N\},\$		$(A \cup B) - (A \cap B) =$	
	$C = \{x \mid x \text{ is a multiple of } 10, x \in N\}, \text{ then }$		a) A – B b	B = A
	$A \cap (B \cup C) =$		c) $(A-B) \cup (B-A)d$	
	a) {10,20,30,}	18	$B = \{x/x^2 - x - 12 = 0\}$	1
	b) {5,10,20,}	10.	$C = \{x/x^2 - 8x + 15 = 0\}$	
	c) {4,8,10,12,}		C C	b) $\{3,4\}$
	d) {2,4,5,15,}		c) $\{-3,3,4,5\}$	
10.	If X is the universal set and A, B are subsets of	10	If A is any set, then C	1) {-5,4,5}
	X such that $n(X) = 99$, $n(A') = 80$, $n(B') = 85$ and	15.		
	$n(A \cap B)' = 94$, then $n(A \cup B) =$		a) $A \cup A' = \phi$ b	$A \cap A' = X$
	a) 33 b) 14		c) $A \cap A' = \phi$	d) none of these
	c) 28 d) 29	20.	In a consumer - prefer	ence survey of an item
11.	If $A = \{(a, b): 2a + b = 5, a, b \in W\}$ then $A =$			se Brand A, twenty were
	a) $\{(0,5), (1,3), (2,2)\}$		found to use Brand B, the heating heating	
	b) $\{(0,5), (1,4), (2,1)\}$		the habit of using both l number of consumers u	
	c) $\{(0, 5), (1, 3), (2, 1)\}$		two brands of the item.	-
	d) $\{(1,1), (2,2), (3,3)\}$		a) 30 b	b) 20
12.	$A = \{x/x^2 - 7x + 12 = 0\},\$			1) 35
	B = { $x/x^2 - x - 12 = 0$ }, then A \cap B =	21.	$A = \{x \mid x^2 - 9x + 20 = 0\}$	0},
	a) {3} b) {4}	D	$\mathbf{B} = \{\mathbf{x} \mid \mathbf{x}^2 + 13\mathbf{x} + 42 =$	
	c) $\{-3,3,4\}$ d) $\{3,4,5\}$	11	$C = \{ x \mid x^2 - 3x - 70 =$	0} and the universal se
13.	If $A = \{1, 2, 3, 4, 5\}$, then the number of proper		$X = \{-7, -6, 4, 5, 10, 1\}$	2}, then $A \cap (B \cap C) =$
	subsets of A is		a) $\{-7, -6, 4, 5, 10\}$	
	a) 120 b) 30		b) {4,5,10}	
11	c) 31 d) 32 Which of the following is not true?		c) $\{-7,4,5,10\}$	
14.	Which of the following is not true?		d) φ	
	a) $0 \in \{0, \{0\}\}\$ b) $\{0\} \in \{0, \{0\}\}\$			(0.1:1)
	b) $\{0\} \in \{0, \{0\}\}\$ c) $\{0\} \subset \{0, \{0\}\}\$	22.	In a group of 100 childr	th. Find the number o
			students who like pizza	
15	d) $O \subset \{0, \{0\}\}$ In a class of 120 students, 46 play chess, 30 play		-	b) 15
13.	table tennis and 40 play carrom, 14 play chess			1) 30
	and table tennis, 10 play table tennis and carrom,	23.	If $A = \{a, e, i, o, u\}, C$	·
	8 play chess and carrom, and 30 students do			the universal set, then (A
	not play any of these games. How many play		∪ C)' =	
	chess, table tennis and carrom?		a) $A \cap C$ b	D) A'∩C'
	a) 8 b) 6		c) A'∪C' d	d) $(A \cap C)'$
16	c) 10 d) 4 Which of the following set is not a pull set?	24	In a group of 50 persor	
10.	Which of the following set is not a null set? a) $P = \{x/x \in N \mid 2x + 1 \text{ is even}\}$	27.		e tea and 25 take coffee
	a) $P = \{x/x \in N, 2x + 1 \text{ is even}\}$ b) $Q = \{x/x \in L, x^2 \text{ is not positive}\}$			rsons who take tea only
	b) $Q = \{x/x \in I, x^2 \text{ is not positive}\}$ c) $P = \{x/x \in N, x \text{ is odd and } x^2 \text{ is aven}\}$		(and not coffee) is	
	 c) R = {x/x ∈ N, x is odd and x² is even} d) S = {x/x ∈ R, x² + 1 = 0} 		a) 10 b	o) 25
	u) $S = \{X X \in K, X \neq I = 0\}$		c) 35 c	l) 30

\bigcirc		Sets, Relation	s and Functions 176		
25.	Let $A = \{(x, y) : y =$	$e^x, x \in \mathbb{R}$		12.2 Relations	
	B = {x, y} : y = e^{-x} , z a) A \cap B = ϕ		35.	If R is a set of all real numbers then what does cartesian product $R \times R \times R$ represent ?	
26.	c) $A \cup B = R^2$ If A and B are two sequal to a) A	d) None of these sets, then $A \cap (A \cup B)'$ is b) B		 a) set of all points in space b) set of all points in XY plane c) set of points, only in 1st Quadrant of XY plane d) R² 	
27.	c) ϕ If A and B are two s $(A-B) \cup (B-A) \cup$	d) $A \cap B$ ets then $(A \cap B)$ is equal to	36.	 If A = {a, b, c, d} and B = {1, 2, 3}, then which of the following is a relation from A to B ? a) R, = {(a, 1), (2, b), (c, 3)} b) R₂={(a, 1), (d, 3), (b, 2), (b, 3)} 	
28.	then $\{(A - B) \cup (B to)\}$	b) $A \cap B$ d) B' al set and $A \cup B \cup C = U$, $-C) \cup (C - A)$ }' is equal	37.	 c) R₃={(l,a),(2,b),(3,c)} d) R₄={(a, 1), (b, 2), (c, 3), (3, d)} Let A and B be two sets such that A × B = {(a, 1), (b, 3), (a, 3), (b, 1), (a, 2), (b, 2)}, Then, a) A ={1,2, 3} and B = {a,b} 	
29.	80 % an ear, 75 % an		38.	a) $A = \{1, 2, 3\}$ and $B = \{a, b\}$ b) $A = \{a, b\}$ and $B = \{1, 2, 3\}$ c) $A = \{1, 2, 3\}$ and $B \subset \{a, b\}$ d) $A \in \{a, b\}$ and $B \subset \{1, 2, 3\}$ The cartesian product $A \times A$ has 9 elements	
30.	c) 15 A survey shows that cheese whereas 76 % Americans like both	d) 9 63 % of the Americans like 6 like apples. If x % of the cheese and apples, then b) $x = 63$	39.	among which are found (-1,0) and (0, 1). Then the set A is a) {-1,0,1} b) {-1,0,2} c) {-1,11,10} d) {-2,0,2} If A = {a, b}, B = {c, d}, C = {d, e}, then {(a, c),	
31.	c) $39 \le x \le 63$ If (1, 3), (2, 5) and (A × B and the total m is 6, then the remain a) (1,5); (2, 3); (3, 5)	d) $39 < x < 63$ (3, 3) are three elements of amber of elements in A × B ing elements of A × B are () b) (5, 1); (3, 2); (5, 3)		(a, d), (a, e), (b, c), (b, d), (b, e)} = a) $A \cap (B \cup C)$ b) $A \cup (B \cap C)$ c) $A \times (B \cup C)$ d) $A \times (B \cap C)$ Let A and B be two sets such that $A \times B$ has 6 elements. If three elements of $A \times B$ are	
32.	A - B = A iff a) $A \subset B$	b) $B \subset A$ d) $A \cap B = \phi$		{(1,4), (2, 6), (3, 6)}, then a) $A = \{1, 2\}$ and $B = \{3, 4, 6\}$ b) $A = \{4, 6\}$ and $B = \{1, 2, 3\}$ c) $A = \{1, 2, 3\}$ and $B = \{4, 6\}$	
33.	 If C = {x/ x is an od D = {x/ x is a print a) {2,4,6,8} c) {1,2,3,4,5,} 	ne number}, then $C \cap D = b$) ϕ	41.	 d) A= {1,2,4} and B = {3, 6} Let A = {1, 2, 3}. The total number of distinct relations, that can be defined over A is a) 2⁹ b) 6 	
34.	If $X = \{8^n - 7n - 1 : n \in A\}$ $Y = \{49(n - 1) : n \in A\}$ $x \subseteq Y$ x = Y	\in N} and	42.	c) 8 d) 9 Let $P = \{(x, y) x^2 + y^2 = 1, x, y \in R\}$. Then P is a) Reflexive b) Symmetric c) Transitive d) Anti-symmetric	

)	Sets, Relation	ns and	Functions 177
	Let R be an equivalence relation on a finite set A having n elements. Then the number of ordered pairs in R is a) Less than n b) Greater than or equal to n c) Less than or equal to n d) not equal to n If R be a relation < from $A = \{1,2, 3, 4\}$ to $B = \{1, 3, 5\}$ i.e., $(a, b) \in R \Leftrightarrow a < b$, then	51.	Let R be a relation on a set A such that R = R ⁻¹ ,then R is a) Reflexive b) Symmetric c) Transitive d) Not symmetric Which one of the following relations on R is an equivalence relation a) aR, b $\Leftrightarrow a = b $ b) aR ₂ b $\Leftrightarrow a \ge b$ c) aR ₃ b $\Leftrightarrow a$ divides b
5.	Ro R^{-1} is a) {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)} b) {(3,1) (5,1), (3, 2), (5, 2), (5, 3), (5, 4)} c) {(3, 3), (3, 5), (5, 3), (5, 5)} d) {(3, 3) (3, 4), (4, 5)} Let n(A) = n, then the number of all relations on		 d) aR₄ ⇔ a < b The relation "congruence modulo m" is a) Reflexive only b) Transitive only c) Symmetric only d) An equivalence relation
	A is		· -
	a) 2 ⁿ b) 2 ^{(n)!}	54	<u>12.3 Functions</u>
6.	c) 2^n d) n^2 If R is a relation from a finite set A having melements to a finite set B having n elements, then the number of relations from A to B is a) 2^{mn} b) $2^{mn}-1$	7	Let A = {1,2, 3} and B = {2, 3, 4}, then which of the following is a function from A to B ? a) {(1,2), (1,3), (2, 3), (3, 3)} b) {(0, 3), (2, 4)}
7.	c) 2 mn d) m ⁿ If $R = \{(x, y) x, y \in Z, x^2 + y^2 \le 4\}$ is a relation		c) $\{(1,3), (2,3), (3,3)\}$ d) $\{(1,2), (2,3), (3,4), (3,2)\}$
	in Z, then domain of R is a) {0,1,2} b) {0,-1,-2} c) {-2,-1,0,1,2} d) {-2,-1,0,1}	55.	If $f(x) = ax^2 + bx + 2$ and $f(1) = 3$, $f(4) = 42$, then a and b respectively are a) -3 , 2 b) 3, 2
8.	The relation R defined in N as aRb \Leftrightarrow b is divisible by a is		c) $-2, 3$ d) $3, -2$ If $f = \{(1,4), (2,5), (3,6)\}$ and $g = \{(4, 8), (5, 7), (6, 9)\}$, then gof is
0	 a) Reflexive but not symmetric b) Symmetric but not transitive c) Symmetric and transitive d) Symmetric 		a) {} b) { $(1,8), (2,7), (3,9)$ } c) { $(1,7), (2,8), (3,9)$ } d) { $(1,8), (2,5), (3,9)$ }
9.	The relation "is subset of " on the power set P(A) of a set A is a) Symmetric		If for non-zero x, $a.f(x) + b.f(\frac{1}{x}) = \frac{1}{x} - 5$,
	b) Anti-symmetricc) Equivalency relationd) None of these		where $a \neq b$, then $f(2) =$ a) $\frac{3(2b+3a)}{2(a^2-b^2)}$ b) $\frac{3(2b-3a)}{2(a^2-b^2)}$
0.	R is a relation from {11, 12, 13} to {8, 10, 12} defined by $y = x - 3$. Then R ⁻¹ is a) {(8, 11) (10, 13)} b) {(11, 18) (13, 10)}		a) $\overline{2(a^2 - b^2)}$ b) $\overline{2(a^2 - b^2)}$ c) $\frac{3(3a - 2b)}{2(a^2 - b^2)}$ d) $\frac{6}{a + b}$
	a) {(8, 11), (10, 13)} b) {(11, 18), (13, 10)} c) {8,11} d) {10,13}		c) $\frac{1}{2(a^2 - b^2)}$ d) $\frac{1}{a + b}$

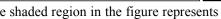


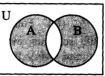


	Sets, Relations and Functions					
35.	If in greatest integer function, the domain is a set of real numbers, then range will be set of a) Real numbers		Competitive Thinking			
				<u>12.1 Sets</u>		
	b) Rational numb	APT C	1.	Two finite sets have m and n elements. The total		
	·	c) Imaginary numbersd) Integers		number of subsets of the first set is 56 more than		
	, c			the total number of subsets of the second set.		
26	If the domain of function $f(x) = x^2 - 6x + 1$ is			The values of m and n are		
	If the domain of function $f(x) = x = 6x + 1$ is $(-\infty, \infty)$, then the range of function is			a) 7,6 b) 6,3		
		-		c) 5, 1 d) 8, 7		
	a) $(-\infty,\infty)$		2.	Suppose $A_1, A_2, A_3, \dots, A_{30}$ are thirty sets		
		d) $(-\infty, -2)$		each having 5 elements and B_1, B_2, \dots, B_n are n sets each with 3 elements.		
87.		function $\frac{\sqrt{1+x} - \sqrt{1-x}}{x}$ is		Let $\bigcup_{i=1}^{30} A_i = \bigcup_{i=1}^{n} B_i = S$ and each elements of S		
		b) $(-1, 1) - \{0\}$		belongs to exactly 10 of the $A_i^{'s}$ and exactly 9 of		
		d) $[-1, 1] - \{0\}$		the B_i^{s} . Then n is equal to		
88.	The interval for w	hich		a) 15 b) 3		
	$\sin^{-1}x\sqrt{x} + \cos^{-1}$	$\sqrt{x} = \pi$		c) 45 d) 35		
	$\sin x\sqrt{x} + \cos$	$\sqrt{x} = \frac{1}{2}$ noids	3.	The set A = $\{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$		
	a) [0,∞)	b) [0,3]		equals		
	c) [0, 1]		-	a) o b) {14,3,4}		
			\boldsymbol{D}	c) {3} d) {4}		
89 .	The domain of $\sin^{-1} \left \log \left(\frac{x}{3} \right) \right $ is		4.	If the sets A and B are defined as		
				A= {(x,y) : $y = e^x, x \in R$ };		
	a) [1,9] c) [-9,1]	b) (-1,9)		$B = \{(x, y) : y = x, x \in R\}, then$		
	c) [-9,1]	d) [-9, -1]		a) $B \subseteq A$		
••	Civen the fun	tion $f(x) = \frac{a^x + a^{-x}}{2} (a > 2)$.		b) $A \subseteq B$		
0.	Given the func	$1(x) = \frac{1}{2} (a > 2)$.		c) $A \cap B = \phi$		
	Then, $f(x + y) + f(x + y)$	$\hat{x}(x-y) =$		d) $A \cup B = A$		
	a) $2f(x).f(y)$	b) $f(x).f(y)$	5.	If $X = \{4^n - 3n - 1 : n \in N \text{ and } \}$		
	f(x)			$Y = \{9(n-1) : n \in N\}$, then $X \cup Y$ is equal to		
	c) $\frac{f(x)}{f(y)}$	d) $f(x) + f(y)$		a) X		
				b) Y		
				c) N		
				d) None of these		
			6.	In a town of 10,000 families it was found that		
				40% family buy newspaper A, 20% buy		
				newspaper B and 10% families buy newspaper		
				C, 5% families buy A and B, 3% buy B and C		
				and 4% buy A and C. If 2% families buy all the three newspapers, then number of families which		
				buy A only is		
				a) 3100 b) 3300		
				c) 2900 d) 1400		
			l	c) 2000 d) 1400		

	Sets, Relations and Functions 181					
7.	If A, B and C are non-empty sets, then		15.	The number of elements	ments in the set	
	$(A - B) \cup (B -$	A) equals		$\{(a, b): 2a^2 + 3b^2 = 35, a, b \in Z\}$, where Z is the		
	a) $(A \cup B) - B$			set of all integers, i		
	b) $A - (A \cap B)$			a) 2	b) 4	
	c) $(A \cup B) - (A$	$\sim \mathbf{P}$)		c) 8	d) 12	
	c) $(A \cap B) - (A$ d) $(A \cap B) \cup (A$		16.	subsets of this se	+ 1 elements. The number of et containing more than n	
8.	If P, Q and R	are subsets of a set A, then		elements is equal to a) 2^{n-1}	b) 2 ⁿ	
	$\mathbf{R} \times (\mathbf{P^c} \cup \mathbf{Q^c})^c =$	=		a) 2 c 2^{n+1}	d) 2^{2n}	
	a) $(\mathbf{R} \times \mathbf{P}) \cap (\mathbf{F})$	$R \times Q$)	17		,	
	b) $(\mathbf{R} \times \mathbf{Q}) - (\mathbf{R}$	× P)	17.		wing is a true statement ? b) $(a) = (a + a)$	
	c) $(\mathbf{R} \times \mathbf{P}) \cup (\mathbf{F})$	$R \times Q$)			b) $\{a\} \subseteq \{a, b, c\}$	
	d) (a) and (b)			c) $\phi \in \{a,b,c\}$	d) None of these	
).		ne null set is represented by	18.	If $A = \{x : x \text{ is a meta} \}$	ultiple of 4} and	
	a) {}	b)		$B = \{x : x \text{ is a multiples of } all \text{ multiples of } \}$	ple of 6} then $A \subset B$ consists	
	c) $\{x:x=x\}$	d) $\{x : x \neq x\}$		a) 16	b) 12	
10.		non-empty subsets of the set		c) 8	d) 4	
	$\{1,2,3,4\}$ is		19.	A class has 175 s	tudents. The following data	
	a) 15	b) 14	7		of students obtaining one or	
	c) 16	d) 17	D		Aathematics 100, Physics	
11.	If A, B, C be thr	ee sets such that			; Mathematics and Physics	
	$A \cup B = A \cup C$ and $A \cap B = A \cap C$, then			30, Mathematics and Chemistry 28, Physic Chemistry 23; Mathematics, Physic		
	a) $A = B$	b) B = C			w many students have offered	
	c) $A = C$	d) $A = B = C$		Mathematics alone	9	
12.	If $N = \{an : n \in$	N}, then $N_5 \cap N_7 =$		a) 35	b) 48	
	u			c) 60	d) 22	
	a) N_7	b) N	20.	Consider the follow	ving relations :	
1	c) N_{35}	d) N ₅		1. A - B = A - (A	$(\cap B)$	
3.	-	in a school, 224 played cricket, ey and 336 played basketball.		2. $A = (A \cap B)$	(A - B)	
		ayed both basketball and hockey;		3. A– (B \cup C) =	$(A - B) \cup (A - C)$	
		t and basketball and 40 played		which of these is/a	re correct	
	1 2	y; 24 played all the three games.		a) 1 and 3	b) 2 only	
		oys who did not play any game		c) 2 and 3	d) 1 and 2	
	is		21.		B are having 99 elements in	
	a) 128	b) 216		· · · · · · · · · · · · · · · · · · ·	number of elements common	
	c) 240	d) 160			$A \times B$ and $B \times A$ are	
4.		pupils, 12 take needle work,		a) 2 ⁹⁹	b) 99 ²	
		and 18 take history. If all the		c) 100	d) 18	
		at least one subject and no one en the number of pupils taking	22.		0, n(A) = 12, n(B) = 9,	
	2 subjects is	en me number of pupils uiking			here U is the universal set, A $p(A + B)$	
	a) 16	b) 6			of U, then $n((A \cup B)^c) =$	
	c) 8	d) 20		a) 17 c) 14	b) 9 d) 3	

What can be the minimum number of elements in $A \cup B$ a) 3 b) 6 c) 9 d) 18 24. If $A = [(x, y) : x^2 + y^2 = 25]$ and $B = [(x, y) : x^2 + 9y^2 = 144$, then $A \cap B$ contains a) One point b) Three points c) Two points d) Four points 25. In a college of 300 students, every student reads 5 newspaper and every newspaper is read by 60 students. The no. of newspaper is a) At least 30 b) At most 20 c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^e \cap B^e$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if	e shaded region in the
What can be the minimum number of elements in $A \cup B$ a) 3 b) 6 c) 9 d) 18 24. If $A = [(x, y) : x^2 + y^2 = 25]$ and $B = [(x, y) : x^2 + 9y^2 = 144$, then $A \cap B$ contains a) One point b) Three points c) Two points d) Four points 25. In a college of 300 students, every student reads 5 newspaper and every newspaper is read by 60 students. The no. of newspaper is a) At least 30 b) At most 20 c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^c \cap B^c$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if	
24. If $A = [(x, y) : x^2 + y^2 = 25]$ and $B = [(x, y) : x^2 + 9y^2 = 144$, then $A \cap B$ contains a) One point b) Three points c) Two points d) Four points 25. In a college of 300 students, every student reads 5 newspaper and every newspaper is read by 60 students. The no. of newspaper is a) At least 30 b) At most 20 c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, A - (A - B) equals a) B b) A - B c) A ∩ B d) A ^c ∩ B ^c 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if 24. If A B = 0 25. If $A \cap B = 0$, $A \cap B \cap B = 0$, $A \cap B = 0$, $A \cap B \cap B = 0$, $A \cap B \cap B \cap B = 0$, $A \cap B \cap $	
a) One point b) Three points c) Two points d) Four points 25. In a college of 300 students, every student reads 5 newspaper and every newspaper is read by 60 students. The no. of newspaper is read by 60 students. The no. of newspaper is a) At least 30 b) At most 20 c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^c \cap B^c$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if (A a) A $\subset A = B$ (A a) (A $\subset A = B$ (A $\subset A = B$ (A $\subset B$ (A $\odot B$ (A $\subset B$ (A $\odot B$ (A $\subset B$ (A $\odot B$ (A $\subset B$ (A $\odot B$ (A $\odot B$ (A $\odot B$ (A $\odot B$ (A $\subset B$ (A $\odot B$ (A $\subset B$ (A $\odot B$	
5 newspaper and every newspaper is read by 60 students. The no. of newspaper is a) At least 30 b) At most 20 c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^c \cap B^c$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if d d d d d d d d	$A \cap B$ $A \cup B$
c) Exactly 25 d) Exactly 30 26. If $n(A) = 8$ and $n(A \cap B) = 2$, then $n[(A \cap B)' \cap A]$ is equal to a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^{c} \cap B^{c}$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$ 30. For any two sets A and B if A = B + A =	$B - A$ $(A - B) \cup (B - A)$
$n[(A \cap B)' \cap A] \text{ is equal to}$ $a) 2 \qquad b) 4 \qquad c) 6 \qquad d) 8$ 27. For any two sets A and B, A - (A - B) equals $a) B \qquad b) A - B \qquad d) A^{c} \cap B^{c}$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ $a) 4 \qquad b) 6 \qquad c) 8 \qquad d) 12$ 29. Three sets A, B, C are such that A = B \cap C and B = C \cap A, then $a) A \subset B \qquad b) A \supset B \qquad c) A \subseteq B'$ 30. For any two sets A and B if	$A = \{x \mid x \text{ is a root of } x \\ = \{x \mid x \text{ is a root of } x^2 - x^2 \}$
a) 2 b) 4 c) 6 d) 8 27. For any two sets A and B, $A - (A - B)$ equals a) B b) $A - B$ c) $A \cap B$ d) $A^{c} \cap B^{c}$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A \equiv B$ d) $A \subset B'$ 30. For any two sets A and B if (A (A (A) (A) (B) (C) (C) (C) (C) (C) (C) (C) (C	$A \cap B = A \qquad b)$ $A \cup B = A \qquad d)$
a) B b) $A-B$ c) $A \cap B$ d) $A^{c} \cap B^{c}$ 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y) =$ a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A \equiv B$ d) $A \subset B'$ 30. For any two sets A and B if	e value of
 28. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, n(X ∩ Y) = a) 4 b) 6 c) 8 d) 12 29. Three sets A, B, C are such that A = B ∩ C and B = C ∩ A, then a) A ⊂ B b) A ⊃ B c) A ≡ B d) A ⊂ B' 30. For any two sets A and B if 	$ \begin{array}{c} \cup B \cup C \\ n & (A \cap B^{\circ}) \\ B \cap C^{\circ} \\ B^{\circ} \cap C^{\circ} \end{array} $
c) 8 d) 12 and bot $B = C \cap A$, then a) $A \subset B$ b) $A \supset B$ c) $A \equiv B$ d) $A \subset B'$ 30. For any two sets A and B if $A = B = C \cap A$, then $A = C = C \cap A$, then A =	$B \cap C$ $A \cap B \cap C$ $a class of 60 students, 2:$
a) $A \subset B$ b) $A \supset B$ a)c) $A \equiv B$ d) $A \subset B'$ c) $A = B'$ 30. For any two sets A and B if 37. The	l 20 students play tenni h the games, then the nu y neither is
30. For any two sets A and B if 37. The	,
some set X, then a) $A-B=A \cap B$ b) $A=B$ c)	e set A = $\{x : 2x + 3 < D = \{x : 0 < x + 5 < 7\}$ B = $\{x : -3 < x < 7\}$ E= $\{x : -7 < x < 7\}$
31. If the set A contains 5 elements, then the number of elements in the power set P(A) is equal to a) 32 38. The sing 200	$C = \{x : -13 < 2x < 4\}$ ere is a group of 265 pe ging or dancing or pa) like singing, 110 like nting. If 60 persons 1
32. 25 people for programme A, 50 people for programme B, 10 people for both. So, the number 10	icing, 30 like both sing like all three activities sons who like only dan
a) 15 b) 20 a) c) 35 d) 40 c)	, ,





- $x^2 1 = 0$ -2x+1=0, then
 - $A \cup B = \phi$
 - $A \cap B = \phi$
 - $B^{c} \cap C^{c})^{c} nC^{c}$, is
- 25 students play cricket is and 10 students play umber of students who
 - 0 35
- < 7} is equal to the set
 - }
 - }
- persons who like either ainting. In this group te dancing and 55 like like both singing and iging and painting and es, then the number of ncing and painting is
 - 20 40

MATHEMATICS - XI OBJECTIVE

182

Sets, Relations and Functio

/

Sets, Relations and Functions							
	12.2 Relations	47.	The number of reflexive relations of a set wi				
	Let $A = \{2, 4, 6, 8\}$. A relation R on A is defined by $R = \{(2, 4), (4, 2), (4, 6), (6, 4)\}$. Then R is a) Anti-symmetric b) Reflexive c) Symmetric d) Transitive Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a	48.	four elements is equal to a) 2^{16} b) 2^{12} c) 2^{8} d) 2^{4} If A = (a,b, c}, B = {b, c, d} and C = {a, d, c}, then (A - B) × (B \cap C) = a) $((a, c), (a, d))$				
11.	relation R defined from set A to set B. Then R is equal to set a) A b) B c) $A \times B$ d) $B \times A$ Let R_1 be a relation defined by $R_1 = \{(a, b) a \ge b, a, b \in R\}$. Then R_1 is a) An equivalence relation on R b) Reflexive, transitive but not symmetric	49.	 a) {(a, c), (a, d)} b) {(a,b),(c,d)} c) {(c, a), (a, d)} d) {(a, c), (a, d), (b, d)} The relation R defined in N as aRb ⇔ b divisible by a is a) Reflexive but not symmetric b) Symmetric but not transitive c) Symmetric but not transitive 				
2.	 c) Symmetric, transitive but not reflexive d) Neither transitive nor reflexive but symmetric In order that a relation R defined on a not empty set A is an equivalence relation, it sufficient, if R a) Is reflexive 	50.	c) Symmetric and transitive d) None of these Let r be a relation from R (set of real number to R defined by $r = \{(a, b) a, b \in R \text{ and} a-b+\sqrt{3} \text{ is an irrational number}\}$. The relation				
13.	 b) Is symmetric c) Is transitive d) Possesses all the above three properties Let R = {(3, 3), (6, 6), (9, 9), (12, 12), (6, 12} (3, 9), (3, 12), (3, 6)} be a relation on the 	D	 r is a) an equivalence relation b) reflexive only c) symmetric only d) transition only 				
	 (3, 9), (3, 12), (3, 0); be a relation on the A = {3, 6, 9, 12}. Then relation is a) An equivalence relation b) Reflexive and symmetric only c) Reflexive and transitive only d) Reflexive only 	51.	 d) transitive only Let a relation R in the set N of natural numbers be defined as (x, y) ⇔ x² - 4xy + 3y² = 0 ∀ x, y ∈ N. Trelation R is a) reflexive 				
	Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. Then relation R is a) Reflexive b) Transitive c) Not symmetric d) A function	52.	 b) symmetric c) transitive d) an equivalence relation Let A = {x, y, z} and B = {a, b, c, d}. Which could be following is not a relation from A to P² 				
5.	If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is a) 2^9 b 9^2 c) 9 d) 2^{9-1}		 of the following is not a relation from A to B? a) {(x, a), (x, c)} b) {(y, c), (y, d)} c) {(z, a), (z, d)} d) {(z, b), (y, b), (a, d)} 				
6.	 Let R be the relation on the set R of all real numbers defined by a R b iff a - b ≤ 1. Then R is a) Reflexive and Symmetric b) Symmetric only c) Transitive only d) Anti-symmetric only 	53.	 R ⊆ A × A (where A ≠ 0) is an equivaler relation if R is a) Reflexive, symmetric but not transitive b) Reflexive, niether symmetric nor transitive c) Reflexive, symmetric and transitive d) None of these 				

)		Sets, Relation	s and	Functions	184
4.	On the set N of all natural relation R by aRb iff the G. (Then R is a) reflexive but not symmet b) symmetric only	C. D. of a and b is 2.		about the lin a) $f(x) = -f(x)$ c) $f(x) = f(-f(x))$	f(-x) b) $f(2 + x) = f(2 - x)$ -x) d) $f(x + 2) = f(x - 2)$
	 c) reflexive and transitive d) reflexive, symmetric and Let W denote the words in Define the relation R by R = the words x and y have at common), then R is a) reflexive, not symmetric b) not reflexive, symmetric c) reflexive, symmetric and d) reflexive, symmetric and For any two real numbers 	English dictionary. = $\{(x, y) \in W \times W:$ t least one letter in and transitive and transitive not transitive transitive		the minimuma) Does notb) Is not attac) Is equal td) Is equal t	exist because f is bounded ained even through f is bounded o +1 o - 1 $f: R \rightarrow R$ defined by $f(x) = (x - 1)$ 3) is but not onto
	 θR φ if and only if sec² θ relation R is a) Reflexive but not transiti b) Symmetric but not reflex c) Both reflexive and symmetric d) An equivalence relation 	ve ive etric but not transitive	64. D	 c) Both one d) Neither o Set A has 3 o The number A to B is a) 144 	-one and onto one-one nor onto elements and set B has 4 elements. of injection that can be defined from b) 12
	If $f(x) = cos(log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy) + f($	[¹]]=		 a) Onto c) One-one Let the fun f(x) = 2x + s a) One-to-one 	 d) 64 a f: R → R defined by f(x) = e^x is b) Many-one and into d) Many one and onto action f : R → R be defined by sin x, x ∈ R. Then f is ne and onto ne but not onto
	If $f(x) = \frac{1-x}{1+x}$, then f [f(co a) tan 20 b) se c) cos 20 d) co The value of b and c for f(x + 1) - f(x) = 8x + 3	c 20 t 20 which the identity	67.	c) Onto butd) Neither o	not one-to-one ne-to-one nor onto from the set of natural numbers to
50.	f(.x) = $bx^2 + cx + d$, are a) $b = 2$, $c = 1$ b) $b = -1$, $c = 4$ d) $b = -1$, $c = 4$ d) $b = -1$ ff(x) = $cos[\pi^2] x + cos[-\pi]$	= 4, c = -1 = -1, c = 1			1-, when n is odd , is , when n is even
	a) $f\left(\frac{\pi}{4}\right) = 2$ b) $f(-1)$ c) $f(\pi) = 1$ d) $f(-1)$			·	

Sets, Relation	as and Functions 185
3. The period of $f(x) = x - [x]$, if it is periodic, is	x+2
1	75. The range of the function $f(x) = \frac{x+2}{ x+2 }$ is
a) $f(x)$ is not periodic b) $\frac{1}{2}$	a) $\{0,1\}$ b) $\{-1,1\}$
c) 1 d) 2	c) R d) $R - \{-2\}$
$\log_2(x+3)$	76. The range of $f(x) = \cos x - \sin x$ is
9. The domain of $f(x) = \frac{\log_2 (x+3)}{x^2 + 3x + 2}$ is	a) $(-1, 1)$ b) $[-1, 1)$
a) R- $\{-2\}$ b) $(-2, +\infty)$	
c) R- $\{-1, -2, -3\}$ d) $(-3, \infty) - \{-1, -2\}$	c) $\left -\frac{\pi}{2}, \frac{\pi}{2} \right $ d) $\left[-\sqrt{2}, \sqrt{2} \right]$
0. The domain of the function $f(x) = \log_{3+x} (x^2 - 1)$	
is	77. Range of $f(x) = \frac{x^2 + 34x - 7i}{x^2 + 2x - 7}$ is
a) $(-3, -1) \cup (1, \infty)$	77. Kange of $1(x) = \frac{1}{x^2 + 2x - 7}$ is
b) $[-3, -1] \cup [1, \infty)$	a) [5,9]
c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$	b) $(-\infty, 5] \cup [9, \infty)$
d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$	c) (5,9)
	d) $(-\infty, 5) \cup (9, \infty)$
1. Domain of the function $f(x) = \sqrt{2 - 2x - x^2}$ is	1.1.4
a) $-\sqrt{3} \le x \le \sqrt{3}$	78. If $f(x) = \log \frac{1+x}{1-x}$, then $f(x)$ is
b) $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$	a) Even function
	b) $f(x) f(x_2) = f(x_1 + x_2)$
c) $-2 \le x \le 2$	
d) $-2 + \sqrt{3} \le x \le -2 - \sqrt{3}$	c) $\frac{f(x_1)}{f(x_2)} = f(x_1 - x_2)$
2. The domain of the function	
$\sqrt{\log(x^2 - 6x + 6)}$	d) Odd function
a) $(-\infty, \infty)$	79. If $y = f(x) = \frac{x+2}{x-1}$, then $x =$
	x - 1, then $x - 1$
b) $(-\infty, 3-\sqrt{3}) \cup (3+\sqrt{3}, \infty)$	a) f(y) b) 2f(y)
c) $(-\infty, 1) \cup [5, \infty)$	
d) [0, ∞]	c) $\frac{1}{f(y)}$ d) - f(y)
3. Domain of the function	80. If the function $f: [1, \infty) \rightarrow [1, \infty)$ is defined by
$f(x) = \sin^{-1}(1 + 3x + 2x^2)$ is	$f(x) = 2^{x(x-1)}$ then $f^{-1}(x)$ is
a) $(-\infty, \infty)$ b) $(-1, 1)$	$(1)^{X(x-1)}$
	a) $\left(\frac{1}{2}\right)^{x(x-1)}$
c) $\left[-\frac{3}{2}, 0\right]$ d) $\left(-\infty, \frac{-1}{2}\right) \cup (2, \infty)$	
	b) $\frac{1}{2}(1 + \sqrt{1 + 4\log_2 x})$
4. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$	
V) X	$1 \left(1 - \sqrt{1 + 4 \log x}\right)$
is	c) $\frac{1}{2}(1-\sqrt{1+4\log_2 x})$
a) [1, 2) b) [2, 3)	d) Not defined
c) [1,2] d) [2,3]	

186 Sets, Relations and Functions **81.** If f(x) = 3x - 5, then $f^{-1}(x)$ is **89.** The domain of the function $f(x) = \sqrt{\log \frac{1}{|\sin x|}}$ is a) $\frac{1}{3x-5}$ a) $R-\{2n\pi, n \in I\}$ b) $R-\{n\pi, n \in I\}$ b) Is given by $\frac{x+5}{3}$ c) R- $(-\pi, \pi)$ d) $(-\infty, \infty)$ c) Does not exist because f is not one-one 90. The function $f(x) = \sin(\log(x + \sqrt{x^2 + 1}))$ is d) Does not exist because f is not onto a) Even function 82. If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$, for what value of α is b) Odd function c) Neither even nor odd f(f(x)) = xd) Periodic function b) $-\sqrt{2}$ a) $\sqrt{2}$ 91. $f(x) = \frac{2x-1}{x+5}$ (x \neq 5), then $f^{-1}(x)$ is equal to d) – 1 c) 1 a) $\frac{x+5}{2x-1}$, $x \neq \frac{1}{2}$ b) $\frac{5x+1}{2-x}$, $x \neq 2$ 83. If $f(x) = \log \left[\frac{1+x}{1-x} \right]$, then $f \left[\frac{2x}{1+x^2} \right]$ is equal to a) $[f(x)]^2$ b) $[f(x)]^3$ c) $\frac{5x-1}{2-x}$, $x \neq 2$ d) $\frac{x-5}{2x+1}$, $x \neq \frac{1}{2}$ c) 2f(x)d) 3f(x)84. Let $f : N \rightarrow N$ defined by $f(x) = x^2 + x + 1$, 92. The inverse of the function $f(x) = \frac{e^x + e^{-x}}{e^x + e^{-x}} + 2$ $x \in N$, then f is a) One-one onto is b) Many one onto a) $\log_{e}\left(\frac{x-2}{x-1}\right)^{\frac{1}{2}}$ b) $\log_{e}\left(\frac{x-1}{3-x}\right)^{\frac{1}{2}}$ c) One-one but not onto d) None of these 85. Which one of the following is a bijective function c) $\log_{e}\left(\frac{x}{2-x}\right)^{\frac{1}{2}}$ d) $\log_{e}\left(\frac{x-1}{x+1}\right)^{-2}$ on the set of real numbers? a) 2x - 5b) $|\mathbf{x}|$ c) x^2 d) $x^2 + 1$ **93.** If $e^{f(x)} = \frac{10 + x}{10 - x}$, $x \in (-10, 10)$ and **86.** If $f : R \rightarrow S$ defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$ is onto, then the $f(x) = kf\left(\frac{200x}{100 + x^2}\right)$, then k = interval of S is a) [-1, 3] b) [1,1] a) 0.5 b) 0.6 c) [0,1] d) [0, -1]c) 0.7 d) 0.8 87. If f(x) is periodic function with period T, then the function f(ax + b) where a > 0, is periodic with 94. If the real valued function $f(x) = \frac{a^x - 1}{x^n (a^x + 1)}$ is period a) T/b b) aT even, then n equals c) bT d) T/a b) $\frac{-2}{3}$ **88.** Domain of $f(x) = \log |\log x|$ is a) 2 a) $(0,\infty)$ b) (1,∞) c) $\frac{1}{\Lambda}$ d) $-\frac{1}{2}$ d) $(-\infty, 1)$ c) $(0, 1) \cup (1, \infty)$

Sets,	Relations	and	Functions

95. If [x] denotes the greatest integer \leq x then

$\left[\frac{2}{3}\right] + \left[\frac{2}{3} + \frac{1}{99}\right] + \left[2$	$\left(+\frac{2}{99}\right] + \dots + \left[\frac{2}{3} + \frac{98}{99}\right] =$
a) 99	b) 98
c) 66	d) 65

96. If the function

$$f(x) = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) - \cos x \cos \left(\frac{\pi}{3} + \pi\right)$$

is constant (independent of x), then the value of this constant is

- a) 0 b) $\frac{3}{4}$ c) 1 d) $\frac{4}{3}$
- 97. The domain of the function

$$y = f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$$
 is

- a) [-2, 1), excluding 0
- b) [-3, -2], excluding -2.5
- c) [0, 1], excluding 0
- d) none of these
- 98. The domain of the function

f(x) = exp (
$$\sqrt{5x} - 3 - 2x^2$$
) is
a) $\left[1, \frac{-3}{2}\right]$ b) $\left[\frac{3}{2}, \infty\right]$

c)
$$(-\infty, 1]$$
 d) $\left[1, \frac{3}{2}\right]$

99. The composite map fog of the functions $f: R \rightarrow R$, $f(x) = \sin x$ and $g: R \rightarrow R$, $g(x) = x^2$ is

a)
$$(\sin x)^2$$
 b) $\sin x^2$

c)
$$x^2$$
 d) $x^2(sinx)$

100. If $f(x) = (25 - x^4)^{1/4}$ for $0 < x < \sqrt{5}$, then

$$f\left(f\left(\frac{1}{2}\right)\right) =$$
a) 2⁻⁴

a)
$$2^{-4}$$
 b) 2^{-3}
c) 2^{-2} d) 2^{-1}

101. Two functions $f : R \rightarrow R$ and $g : R \rightarrow R$ are defined as follows:

$$f(x) = \begin{cases} 0; (x \text{ rational}) \\ 1; (x \text{ irratonal}) \end{cases}$$
$$g(x) = \begin{cases} -1; (x \text{ rational}) \\ 0; (x \text{ irratonal}) \end{cases}$$
then (gof)(e) + (fog)(\pi) =
a) - 1 b) 0
c) 1 d) 2

102. If the functions f, g, h are defined from the sets of real numbers R to R such that

$$f(x) = x^{2} - 1, g(x) = \sqrt{x^{2} + 1}, h(x) = \begin{cases} 0, \text{ if } x \le 0\\ x, \text{ if } x > 0 \end{cases}$$

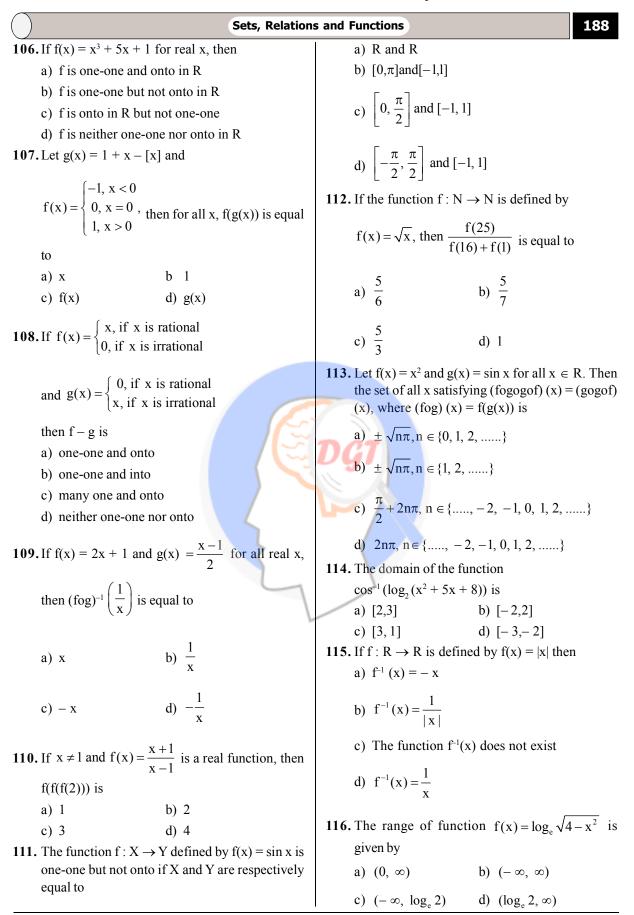
then the composite function (hofog)(x) =

x², x > 0 -x², x < 0
b) $\begin{cases} 0, x = 0 \\ x^2, x \neq 0 \end{cases}$ d) none of these **103.** If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are given by f(x) = |x| and g(x) = [x] for each $x \in R$, then ${x \in R : g(f(x)) \le f(g(x)) =$ a) $Z \cup (-\infty, 0)$ b) $(-\infty, 0)$ c) Z d) R **104.** If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) is equivalent to a) f(c) = g(a)b) f(d) = g(b)c) f(a) = g(c)d) f(b) = g(b)105.If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos \left(x + \frac{\pi}{3} \right) \cos x$ and $g\left(\frac{5}{4}\right) = 1$, then gof(x) is a) a polynomial of first degree in sin x and cosx

- b) a constant function
- c) a polynomial of second degree in sin x and cos x
- d) none of these

MATHEMATICS - XI OBJECTIVE

187



Sets, Relations and Functions 189 126. The domain of the function 117. The range of the function $f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$ is $f(x)\sqrt{\cos^{-1}\left(\frac{1-|x|}{2}\right)}$ is b) $[0, \sqrt{3}]$ a) [0,3] a) (-3.3)b) [-3, 3] d) $[3, \sqrt{3}]$ d) $[\sqrt{3}, 3]$ c) $(-\infty, -3) \cup (3, \infty)$ d) $(-\infty, -3) \cup [3, \infty)$ 118. Equation $\cos 2x + 1 = a(2 - \sin x) \cosh a$ **127.** Let $f = \{(1, 1), (2, 4), (0, -2), (-1, -5)\}$ be a real solution for linear function from Z into Z. Then, f(x) is a) all values of a b) $a \in [2, 6]$ a) f(x) = 3x - 2b) f(x) = 6x - 8c) $a \in (-\infty, 2)$ d) $a \in (0, \infty)$ c) f(x) = 5x - 2d) f(x) = 7x + 2**119.** The range of the function $f(x) = \log_{2}(3x^{2} + 4)$ is **128.** Let $f: R - \left\{\frac{5}{4}\right\} \rightarrow R$ be a function defined as equal to a) $[\log 2, \infty]$ b) $\left[\log_{3,\infty}\right)$ c) $[2\log_{a} 3, \infty)$ d) $[2\log_{a} 2, \infty)$ $f(x) = \frac{5x}{4x+5}$. The inverse of f is the map 120. If $f(x) = \sin x + \cos x$, $x \in (-\infty, \infty)$ and g: Range f \rightarrow R - $\left\{\frac{5}{4}\right\}$ given by $g(x) = x^2, x \in (-\infty, \infty)$, then (fog) (x) is equal to a) 1 b) 0 a) $g(y) = \frac{y}{5-4y}$ b) $g(y) = \frac{5y}{5+4y}$ c) $\sin^2(x) + \cos(x^2)$ d) $\sin(x^2) + \cos(x^2)$ 121. Number of bijective function from a set of 10 elements to itself is c) $g(y) = \frac{5y}{5-4y}$ d) None of these a) 5! b) 10! c) 15! d) 8! **129.** Let $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ and f, g : $A \rightarrow B$ be function defined by **122.** If g(y) is inverse of function $f: R \rightarrow R$ given by f(x) = x + 3, then g(y) = $f(x) = x^2 - x$ and $g(x) = 2 \left| x - \frac{1}{2} \right| - 1$. Then a) y + 3b) v - 3a) f = g b) f = 2gc) $\frac{y}{3}$ d) 3y c) g = 2fd) None of these 123. Let R be the set of real numbers and the mapping $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by **130.** If $f(x) = \frac{x-1}{x+1}$, then f(2x) is $f(x) = 5 - x^2$ and g(x) = 3x - 4, then the value of (fog) (-1) is a) $\frac{f(x)+1}{f(x)+3}$ b) $\frac{3f(x)+1}{f(x)+3}$ a – 44 b) - 54 c) -32d) - 64 c) $\frac{f(x)+3}{f(x)+1}$ d) $\frac{f(x)+3}{3f(x)+1}$ **124.** $A = \{1, 2, 3, 4\}, B = (1, 2, 3, 4, 5, 6\}$ are two sets and function $f: A \rightarrow B$ is- defined by **131.** Let $f : N \rightarrow N$ defined by $f(x) = x + 2; \forall x \in A$, then the function f is a) Bijective b) Onto $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ then f is c) One-one d) Many-one **125.** The function $f(x) = \sec \left| \log \left(x + \sqrt{1 + x^2} \right) \right|$ is a) onto but not one-one a) Odd b) one-one and onto b) Even c) neither one-one nor onto c) Neither odd nor even d) one-one but not onto d) Constant MATHEMATICS - XI OBJECTIVE

Sets, Relations and Functions

Evaluation Test

1.	If $g(x) = x^2 + x - 2$ and	$d\frac{1}{2}$ (gof)(x) = 2x ² - 5x + 2,	
	then $f(x)$ is equal to		
	a) $2x + 3$	b) 2x – 3	8
	c) $2x^2 + 3x + 1$	d) $2x^2 - 3$	
2.	If $f(x)$ and $g(x)$ are two	· ·	
	$g(x) = x - \frac{1}{x}$ and fog	$f(x) = x^3 - \frac{1}{x^3}$, then f'(x) =	
	a) $3x^2 + 3$	b) $x^2 - \frac{1}{x^2}$	
	c) $1 + \frac{1}{x^2}$	d) $3x^2 + \frac{3}{x^4}$	
3.	If $f : R \rightarrow R$ satisfies	f(x + y) = f(x) + f(y) for all	
	$x, y \in R \text{ and } f(l) = 7,$, then $\sum_{i=1}^{n} f(r)$ is	
		r=l	9
	a) $\frac{7n(n+1)}{2}$	b) $\frac{7n}{2}$	1
	c) $\frac{7(n+1)}{2}$	d) 7n(n+1)	
4.		defined by $f(x) = x^2 - 3$ for -1) + (fofof) (0)+(fofof) (1)	
	a) $f(4\sqrt{2})$	b) $f(3\sqrt{2})$	1
	c) $f(2\sqrt{2})$	d) $r(\sqrt{2})$	
5.	Let [x] denote the g	reatest integer less than or	
		$(\overline{3}+1)^5$, then [x] is equal to	
	a) 75	b) 50	1
	c) 76	d) 152	
6.	If f is a real valued fu f(x + y) = f(x) + f(y) of f(100) is	and $f(l) = 5$, then the value	
	a) 200	b) 300	
7	c) 350	d) 500	
7.	subsets of the plane l	the consider the following $R \times R$:	1
	$S = \{(x, y) : y = x + 1\}$		
	$T = \{(x,y) : x - y \text{ is an } $	n integer}	
	Which one of the foll	owing is true?	

190 a) S is an equivalence relation on R but T is not b) T is an equivalence relation on R but S is not c) Neither S nor T is an equivalence relation on R d) Both S and T are equivalence relations on R Consider the following relations: 8. $R = \{(x, y) : x, y \text{ are real numbers and } \}$ $x = \omega y$ for some rational number ω S $\left\{ \left(\frac{m}{n}, \frac{p}{q}\right) : m, n, p \text{ and } q \text{ are integers such that} \right\}$ n, $q \neq 0$ and qm = pn} Then, a) S is an equivalence relation but R is not an equivalence b) R and S both are equivalence relations c) R is an equivalence relation but S is not an equivalence relation d) neither R nor S is an equivalence relation 9. Let $P = \{\theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$ and Q = { θ : sin θ + cos θ = $\sqrt{2}$ sin θ } be two sets. Then, a) $P \subset Q$ and $Q - P = \phi$ b Q ⊄ P c) P ⊄ Q d) P = O10. The domain of the function $f(x) = \sin^{-1}\left(\frac{8, 3^{x-2}}{1-3^{2(x-1)}}\right)$ is a) $(-\infty, 0]$ b) $[2, -\infty)$ c) $(-\infty, 0) \cup [2, \infty)$ d) $(-\infty, -1) \cup (1, \infty)$ 11. A real valued function f(x) satisfies the functional equation f(x - y) = f(x) f(y) - f(a - x) f(a + y), where a is a given constant and f(0) = 1, f(2a - x) is equal to a) f(-x)b) f(a) + f(a - x)c) f(x)d) f(x)12. If n(A) denotes the number of elements in set A and if n(A) = 4, n(B) = 5 and $n(A \cap B) = 3$, then $n[(A \times B) \cap (B \times A)] =$

b) 9

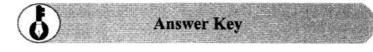
d) 11

MATHEMATICS - XI OBJECTIVE

a) 8

c) 10

DGT MH –CET 11th MATHEMATICS Study Material					
	Sets, Relation	s and Functions		191	
13. If $A = \{\theta : 2 \cos^2 \theta + s\}$	$\sin \theta \leq 2$ and	14. The domain of t	he function		
$\mathbf{B} = \left\{ \boldsymbol{\theta} \colon \frac{\pi}{2} \le \boldsymbol{\theta} \le \frac{3\pi}{2} \right\}, \mathbf{t}$	then $A \cap B$ is equal to	$f(x) = \sqrt{\log_{10} \left\{ \frac{1}{2} \right\}}$	$\frac{\log_{10} x}{2(3 - \log_{10} x)}$ is		
a) $\left\{ \theta : \pi \le \theta \le \theta \le \frac{3\pi}{2} \right\}$		a) $(10, 10^3)$ b) $(10^2, 10^3)$			
b) $\left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{5\pi}{6} \right\}$		c) $[10^2, 10^3)$ d) $[10^2, 10^3]$			
c) $\left\{ \theta: \frac{\pi}{2} \le \theta \le \frac{5\pi}{6} \right\} \cup \theta$	$\left\{ \theta : \pi \le \theta \le \frac{3\pi}{2} \right\}$		0000		
d) none of these					
Classical Thinking	<u>.</u>				
11. (B) 12. (A) 21. (A) 22. (A) 31. (D) 32. (C) 41. (B) 42. (C) 51. (C) 52. (A)	3. (C) 4. (A) 5. (13. (A) 14. (C) 15. (23. (A) 24. (C) 25. (33. (A) 34. (D) 35. (43. (C) 44. (B) 45. (53. (B) 54. (D) 55. (63. (C) 64. (A) 65. (D) 26. (D) 27. (B) B) 36. (A) 37. (D) A) 46. (C) 47. (D) D) 56. (A) 57. (D)	48. (D) 49. (A)	 20. (A) 30. (A) 40. (B) 50 (B) 60. (A) 	
Critical Thinking		DGT			
11. (C) 12. (B) 21. (D) 22. (A) 31. (A) 32. (D) 41. (A) 42. (B) 51. (B) 52. (A) 61. (C) 62. (B) 71. (A) 72. (B)	13. (C) 14. (D) 15. (C) 46. (A) 47. (C) D) 56. (B) 57. (B) C) 66. (C) 67. (A) B) 76. (C) 77. (C)	78. (A) 79. (D)	 20. (A) 30. (C) 40. (C) 50. (A) 60. (C) 70. (A) 	
Competitive Think	king				
11. (B) 12. (C) 21. (B) 22. (D) 31. (A) 32. (A) 41. (B) 42. (D) 51. (A) 52. (D) 61. (B) 62. (D) 71. (B) 72. (C) 81. (B) 82. (D) 91. (B) 92. (B) 101. (A) 102. (B) 111. (C) 112. (D)	3. (A) 4. (C) 5. (13. (D) 14. (A) 15. (23. (B) 24. (D) 25. (33. (D) 34. (C) 35. (43. (C) 44. (C) 45. (53. (C) 54. (B) 55. (63. (B) 64. (C) 65. (73. (C) 74. (B) 75. (83. (C) 84. (A) 85. (93. (A) 94. (D) 95. (103. (D) 104. (B) 105. (113. (A) 114. (D) 115. (123. (A) 124. (C) 125. ($ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28. (D) 29. (C) 38. (A) 39. (C) 48. (A) 49. (A) 58. (C) 59. (B) 68 (C) 69. (D) 78. (D) 79. (A) 88. (C) 89. (B) 98. (D) 99. (B) 108. (A) 109. (B) 118. (B) 119. (D)	 20. (D) 30. (B) 40. (C) 50. (B) 60. (D) 70. (C) 80. (B) 90. (B) 100. (D) 110. (C) 120. (D) 	
	Answers to I	Evaluation Test			
	3. (A) 4.(A) 5. (D) 13.(C) 14.(C)	6. (D) 7. (B)	8.(A) 9. (D)	10.(C)	



Classical Thinking

		0							
1. (0	C) 2. (B)	3. (C)	4. (A)	5. (D)	6. (C)	7. (D)	8. (B)	9. (A)	10. (A)
11. (H	B) 12. (A)	13. (A)	14. (C)	15. (B)	16. (A)	17. (C)	18. (D)	19. (C)	20. (A)
21. (A	A) 22. (A)	23. (A)	24. (C)	25. (D)	26. (D)	27. (B)	28. (A)	29. (B)	30. (A)
31. (I	D) 32. (C)	33. (A)	34. (D)	35. (B)	36. (A)	37. (D)	38. (B)	39. (C)	40. (B)
41. (H		43. (C)	44. (B)	45. (A)	46. (C)	47. (D)	48. (D)	49. (A)	50 (B)
51. (0		53. (B)	54. (D)	55. (D)	56. (A)	57. (D)	58. (C)	59. (D)	60. (A)
61. (H		63. (C)	64. (A)	65. (B)	66. (C)	67. (B)	68. (A)	69. (D)	70. (B)
Criti	ical Thinking	σ							
Cint.									
1. (I	D) 2. (B)	3. (D)	4. (D)	5. (A)	6. (C)	7. (D)	8. (B)	9. (A)	10. (C)
11. (0	C) 12. (B)	13. (C)	14. (D)	15. (B)	16. (B)	17. (C)	18. (C)	19. (C)	20. (A)
21. (I	D) 22. (A)	23. (B)	24. (B)	25. (B)	26. (C)	27. (A)	28. (C)	29. (A)	30. (C)
31. (A	A) 32. (D)	33. (D)	34. (A)	35. (A)	36. (B)	37. (B)	38. (A)	39. (C)	40. (C)
4 1. (A	A) 42. (B)	43. (B)	44. (C)	45. (C)	46. (A)	47. (C)	48. (A)	49. (B)	50. (A)
51. (H	3) 52. (A)	53. (D)	54. (C)	55. (D)	56. (B)	57. (B)	58. (B)	59. (A)	60. (C)
61. (0	C) 62. (B)	63. (D)	64. (B)	65. (C)	-66. (C)	67. (A)	68. (A)	69. (C)	70. (A
71. (A	- C2	73. (D)	74. (B)	75. (B)	76. (C)	77. (C)	78. (A)	79. (D)	80. (B)
81. (H		83. (A)	84. (D)	85. (D)	86. (B)	87. (D)	88. (C)	89. (A)	90. (A)
8 Com	petitive Thi	nkina			GT				
Com	ipenuve 1 m	пкшу							
1. (H	3) 2. (C)	3. (A)	4. (C)	5. (B)	6. (B)	7. (C)	8. (A)	9. (D)	10. (A)
11. (H	3) 12. (C)	13. (D)	14. (A)	15. (C)	16. (D)	17. (A)	18. (B)	19. (C)	20. (D)
21. (H	3) 22. (D)	23. (B)	24. (D)	25. (C)	26. (C)	27. (C)	28. (D)	29. (C)	30. (B)
31. (4	A) 32. (A)	33. (D)	34. (C)	35. (A)	36. (C)	37. (A)	38. (A)	39. (C)	40. (C)
41. (H	3) 42. (D)	43. (C)	44. (C)	45. (A)	46. (A)	47. (D)	48. (A)	49. (A)	50. (B)
51. (A	A) 52. (D)	53. (C)	54. (B)	55. (C)	56. (D)	57. (D)	58. (C)	59. (B)	60. (D)
61. (H	B) 62. (D)	63. (B)	64. (C)	65. (C)	66. (A)	67. (C)	68 (C)	69. (D)	70. (C)
71. (H	3) 72. (C)	73. (C)	74. (B)	75. (B)	76. (D)	77. (B)	78. (D)	79. (A)	80. (B)
81. (I	3) 82. (D)	83. (C)	84. (A)	85. (A)	86. (A)	87. (D)	88. (C)	89. (B)	90. (B)
91. (H		93. (A)	94. (D)	95. (C)	96. (B)	97. (A)	98. (D)	99. (B)	100. (D)
101. (4		103. (D)	104. (B)	105. (B)	106. (A)	107. (B)	108. (A)	109. (B)	110. (C)
111. (0		113. (A)	114. (D)	115. (C)	116. (C)	117. (B)	118. (B)	119. (D)	120. (D
121. (I		123. (A)	124. (C)	125. (B)	126. (B)	127. (A)	128. (C)	129. (A)	130. (B)
131. (4							(-)		
	-,					10			

Classical Thinking

- 1. Adding 1 to even integers give odd integers.
- 2. $A \cup B = A$ if every element of B is contained in A i.e $B \subset A$
- 7. $A (B \cup C) = (A B) \cap (A C)$

- 10. $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, \dots\}$ $B = \{4, 8, 12, 16, 20, \dots\}$ $A \cup B = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, \dots\}$
- 12. $(A \cap B)' = A' \cup B'$
- 13. There is no real number which is both rational as well as irrational.

- 17. $B \cup C = \{1, 3, 4, 5, 6, 7, 8, 9\}$ $A \cap B = \{5, 7\}, A \cap C = \{4, 8\}$ $A \cap (B \cup C) = \{4, 5, 7, 8\}$ $(A \cap B) \cup (A \cap C) = \{4, 5, 7, 8\}$
- 18. n(U) = 100 A =Students who play cricket, n(A) = 60 B = Students who play volleyball, n(B) = 50 $A \cap B =$ Students who play both the games, $n(A \cap B) = 28$
- $\therefore \quad \text{Number of students who play at least one game} = n(A \cup B) = n(A) + n(B) n(A \cap B) = 82$
- 19. A = {1, 2, 3, 4, 5, ...}, B = {2, 4, 6, 8,...} ∴ A ∩ B = {2, 4, 6, 8}
- 22. B = {2, 4, 6, 8,...}, C = {1, 3, 5, 7,...} B \cap C = ϕ
- 23. n(A) = 25, n(B) = 20 and $n(A \cup B) = 35$ $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $35 = 25 + 20 - n(A \cap B)$ $\Rightarrow n(A \cap B) = 10$
- 24. Since A and B are disjoint, \therefore A \cap B = ϕ
- \therefore n(A \cap B) = 0
 - Now $n(A \cup B) = n(A) + n(B) n(A \cup B)$ = n(A) + n(B) - 0= n(A) + n(B).
- 25. T = Set of members who like tea, n(T) = 11 C = Set of members who like coffee, n(C) = 14 $\therefore n(T \cup C) = 20$
 - $T \cap C'$ = Set of members who like only tea and not coffee.
- $\therefore \quad n(T \cup C') = n(T) n(T \cap C)$
 - $T \cap C$ = Set of members who like both tea and coffee
- $\therefore \quad \mathbf{n}(\mathbf{T} \cap \mathbf{C}) = \mathbf{n}(\mathbf{T}) + \mathbf{n}(\mathbf{C}) \mathbf{n}(\mathbf{T} \cup \mathbf{C}) = 5$
 - $\therefore \quad n(T \cap C) = 5$
 - :. $n(T \cup C') = n(T) n(T \cap C) = 11 5 = 6$
- 26. $A = \{2, 4, 6, 8, 10, ...\}, B = \{5, 10, 15, 20, ...\}$ $C = \{10, 20, 30, 40, ...\}$ and $(A \cap B) = \{10, 20, 30, ...\}$ $\therefore (A \cap B) \cap C = \{10, 20, 30, ...\}$
- 27. Since A, B, C are disjoint sets.
- $\therefore \quad n(A \cup B \cup C) = n(A) + n(B) + n(C) = 21$
- 28. $B \cap C = \{ \}$ $A \cup (B \cap C) = \{2, 4, 5, 7, 8\}$ $(A \cup B) \cap (A \cup C) = \{2, 4, 5, 7, 8\}$
- $A B = \{x: x \in A \text{ and } x \notin B\} = A \cap B'$ 29. 30. $A = \{2, 3\}, B = \{2, 4\}, C = \{4, 5\}$ $(B \cap C) = \{4\}$ *.*.. $A \times (B \cap C) = \{2, 3\} \times \{4\} = \{(2, 4), (3, 4)\}$... 31. $(Y \times A) \cap (Y \times B) = Y \times (A \cap B) = Y \times \phi = \phi$ 32. Here, B = A33. $A \times B = \{(1, 0), (1, 1), (2, 0), (2, 1)\}$ $n(A \times A \times B) = n(A)$. n(A). $n(B) = 3 \times 3 \times 4$ 34. = 3635. $A - B = \{1\}, B - C = \{4\}$ $(A - B) \times (B - C) = \{(1, 4)\}$ *.*.. 36. Since (a, 2), (b, 3), (c, 2), (d, 3), (e, 2) are elements of $A \times B$. a, b, c, d, $e \in A$ and 2, $3 \in B$... 37. $A = \{a, b\}, B = \{1, 2, 3\}$ $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), \}$... (b, 3) $B \times A = \{(1, a), (1, b), (2, a), (2, b), (3, a), \}$ (3, c) $(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{A}) = \phi$ 40. **Dom** (R) = $\{1, 2, 3\}$ 41. $A \cap B = \{3\}$ and $A = \{1, 2, 3\}$ 43. Since $x \not< x$ therefore R is not reflexive. Also x < y does not imply that y < x. So R is not symmetric. Let x Ry and y Rz. Then, x, y and $y < z \Rightarrow x < z$ i.e., x Rz. Hence, R is transitive. $f(x) = x^2 - 3x + 2 \implies f(-1) = (-1)^2 - 3(-1) + 2$ 45. $f(x) = x^2 - 3x + 2$ 46. $f(a + h) = (a + h)^2 - 3(a + h) + 2$ $=a^{2}+(2a-3)h-3a+2+h^{2}$ 47. $f(x) = ax + 6 \Longrightarrow f(1) = a(1) + 6 = a + 6$ $f(1) = 11 \Rightarrow 11 = a + 6 \Rightarrow a = 5$ $f(x) = x^2 - 6x + 5, 0 \le x \le 4$ 48. f(8) does not exist (since x = 8 does not belong to the domain of f). Since f(x) = 3x - 1, $g(x) = x^2 + 1$ 49. $f[g(x)] = 3[g(x)] - 1 = 3[x^2 + 1] - 1 = 3x^2 + 2$. $\frac{3x^2 + 7x - 1}{3} = x^2 + \frac{7}{3}x - \frac{1}{3}$ is a polynomial 51.

function.

52.
$$f(a + 1) - f(a - 1)$$

 $= 4(a + 1) - (a + 1)^{2} - [4(a - 1) - (a - 1)^{2}]$
 $= 4(2 - a)$
54. $f(x) = \frac{x - 1}{x + 1}$
 $\Rightarrow f\left(\frac{1}{f(x)}\right) = f\left(\frac{x + 1}{x - 1}\right) = \frac{x + 1}{x + 1} = \frac{1}{x}$
55. $g[f(x)] = 5[f(x)] - 6 = 5x^{2} - 6$
56. $f(x) = x^{2} + \frac{1}{x}$
 $f\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^{2} + \frac{1}{\left(\frac{1}{x}\right)} = \frac{1}{x^{2}} + x$
57. $(fog)(x) = f[g(x)] = f(x^{3} + 1) = (x^{3} + 1)^{2}$
58. $f(x) = x^{2} - 6x + 9, 0 \le x \le 4$
 $f(3) = (3)^{2} - 6(3) + 9 = 0$
59. For Dom(f), $5x - 7 > 0 \Rightarrow x > \frac{7}{5}$
Hence, $D_{f} = \left(\frac{7}{5}, \infty\right)$
61. $f(f(x)) = f(x^{2} + 1) = (x^{2} + 1)^{2} + 1 = x^{4} + 2x^{2} + 2$
62. As f (b) is not defined, f is not a function.
63. $f\left(f\left(\frac{1}{x}\right)\right) = f\left(1 - \frac{1}{1/x}\right) = f(1 - x) = \frac{x}{x - 1}$
65. $-1 \le 5x \le \Rightarrow \frac{-1}{5} \le x \le \frac{1}{5}$
Hence, domain is $\left[\frac{-1}{5}, \frac{1}{5}\right]$.
66. For $x = -3, 3, |x^{2} - 9| = 0$
Therefore, $\log|x^{2} - 9|$ does not exist at $x = -3, 3$.
Hence, domain of function is $R - \{-3, 3\}$
67. $\log\left\{\frac{5x - x^{2}}{6}\right\} \ge 0 \Rightarrow \frac{5x - x^{2}}{6} \ge 1$
 $\Rightarrow x^{2} - 5x + 6 \le 0$ or $(x - 2)(x - 3) \le 0$.
Hence, $2 \le x \le 3$.
68. $y = 2x - 3 \Rightarrow x = \frac{y + 3}{2}$
 $\Rightarrow f^{-1}(y) = \frac{y + 3}{2} \Rightarrow f^{-1}(x) = \frac{x + 3}{2}$

69. $f(x) = \frac{(x-2)(x-1)}{(x-2)(x+3)}$

Hence, domain is $\{x : x \in \mathbb{R}, x \neq 2, x \neq -3\}$.

70.
$$f[g(x)] = \frac{3[g(x)] + 4}{5[g(x)] - 7} = \frac{3[\frac{7x + 4}{5x - 3}] + 4}{5[\frac{7x + 4}{5x - 3}] - 7} = x$$

Critical Thinking

- 1. A B and B A are always disjoint and hence A - B = B - A only if either of these is ϕ i.e., if $A \subset B$ and $B \subset A$ i.e., if A = B.
- 2. There is no real number x such that $x^2 + 1 = 0$.

4. A = {x/6x² + x - 15 = 0}
∴ 6x² + x - 15 = 0
⇒ (3x + 5)(2x - 3) = 0
∴ x = -\frac{5}{3} \text{ or } x = \frac{3}{2}
⇒ A = {-\frac{5}{3}, \frac{3}{2}}
Similarly, B = {1,
$$\frac{3}{2}$$
} and C = {-1, $\frac{3}{2}$ }
A ∩ B ∩ C = { $\frac{3}{2}$ }

- 5. $A \cup B = \{1, 2, 3, 4, 6\}$ $\Rightarrow (A \cup B)' = \{5, 7, 8\}$
- 6. For any (a, b) ∈ A × B, a ∈ A and b ∈ B. Now (a, b) will belong to B × A only if a ∈ B and b ∈ A and that can happen only if A ∩ B ≠ φ. But, in this case A ∩ B = φ.
 ∴ (A × B) ∩ (B × A) = φ
- 7. A B is the set of those elements of A which are not common with B.
- 8. U = Universal set of all adults M = Set of all males, F = Set of all females V = Set of all vegetarians Total number of adults = 20 Total number of males = 8
 ∴ Total number of females = 20 - 8 = 12 Total number of vegetarian = 9 Total number of male vegetarian = 5
 ∴ Total number of female vegetarian = 5 - 5 = 4
 ∴ Total number of female non-vegetarian

= 12 + 4 = 8

and $(B \cup C) = \{5, 10, 15, 20, ...\}$ $A \cap (B \cup C) = \{10, 20, 30, ...\}$. . n(A) = n(X) - n(A') = 1910. n(B) = n(X) - n(B') = 14 $n(A \cap B) = n(X) - n(A \cap B)' = 5$ $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 28$... 11. $W \rightarrow$ denotes whole numbers 2a + b = 5a = 0, b = 5 or a = 1, b = 3 or a = 2, b = 1... For $a \ge 3$, the values of b will not be whole numbers $\Rightarrow A = \{(0, 5), (1, 3), (2, 1)\}$ 12. $A = \{3, 4\}, B = \{-3, 4\}, A \cap B = \{4\}$ Number of proper subsets of $A = 2^n - 1$ 13. $= 2^5 - 1$[:: o(A) = 5] = 32 - 1 = 31 \subset is a relation between two sets and 0 is not a 14. set. C = Set of students who play chess15. T = Set of students who play table tennisM = Set of students who play carrom n(X) = 120, n(C) = 46, n(T) = 30, n(M) = 40... $n(C \cap T) = 14$, $n(T \cap M) = 10$, $n(C \cap M) = 8$, $n(C \cup T \cup M)' = 30$ $n(C \cup T \cup M) = n(X) - n(C \cup T \cup M)' = 90$... $(C \cap T \cap M) =$ Set of students who play chess, table tennis and carrom. $n(C \cup T \cup M)$. . $= \mathbf{n}(\mathbf{C}) + \mathbf{n}(\mathbf{T}) + \mathbf{n}(\mathbf{M}) - \mathbf{n}(\mathbf{C} \cap \mathbf{T}) - \mathbf{n}(\mathbf{T} \cap \mathbf{M})$ $-n(C \cap M) + n(C \cap T \cap M)$ 90 = 46 + 30 + 40 - 14 - 10 - 8.... $+ n (C \cap T \cap M)$ $n(C \cap T \cap M) = 6$. . Q is not a null set because $Q = \{0\}$ 16. 17. A - B, B - A and $A \cap B$ are pairwise disjoint and their union is $A \cup B$. $B = \{-3, 4\}, C = \{3, 5\}, B \cup C = \{-3, 3, 4, 5\}$ 18. A = Set representing no. of consumers using 20. Brand A, n(A) = 15B = Set representing no. of consumers using Brand B, n(B) = 20 $A \cap B =$ Set representing no. of consumers using both the brands, $n(A \cap B) = 5$

 $A = \{2, 4, 6, 8, 10, ...\}, B = \{5, 10, 15, 20, ...\},\$

 $C = \{10, 20, 30, 40, ...\}$

9.

 $A \cup B =$ Set representing no. of consumers using atleast one brand.

- $n(A \cup B) = n(A) + n(B) n(A \cap B) = 30$...
- $A = \{4, 5\}, B = \{-6, -7\}, C = \{-7, 10\}$ 21. $(B \cap C) = \{-7\} \Longrightarrow A \cap (B \cap C) = \phi$
- P = Set of children who like pizza22. B = Set of children who like burger $n(P) = 62, n(B) = 47, n(P \cap B) = 36$ $(P \cap B') =$ Set of children who like pizza but not burger

∴
$$n(P \cap B') = n(P) - n(P \cap B) = 62 - 36 = 26.$$

Let $A \equiv$ set of persons who take tea and 24. $B \equiv$ set of persons who take coffee $n(A \cup B) = 50, n(A) = 35, n(B) = 25$ $n(A \cap B) = 10$...

Hence,
$$n (A - B) = n (A) - n (A \cap B)$$

= 35 - 10 = 25

Since, $y = e^x$, $y = e^{-x}$ will meet, when $e^x = e^{-x}$ 25. $\Rightarrow e^{2x} = 1$.

$$x = 0, y = 1$$

A and B meet on
$$(0, 1)$$

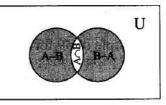
= (A ∩

26.
$$A \cap (A \cup B)' = A \cap (A' \cap B'),$$

$$(A \cap A') \cap B' \qquad \dots [\because (A \cup B)' = A' \cap B']$$
$$(A \cap A') \cap B' \qquad \dots [by \text{ associative law}]$$
$$\phi \cap B', \qquad \dots [\because A \cap A' = \phi]$$

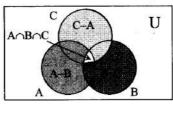
.2

27. From Venn-Euler's diagram,



$$(A-B)\cup (B-A)\cup (A\cap B)=A\cup B$$

28. From Venn-Euler's Diagram,



Clearly, $\{(A - B) \cup (B - C) \cup (C - A)\}'$ $= A \cap B \cap C.$

Minimum value of x = 100 - (30+20+25+15)29. = 100 - 90 = 10.

30. Let A denote the set of Americans, who like cheese and let B denote the set of Americans, who like apples. Let Population of Americans be 100. Then n(A) = 63, n(B) = 76Now, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $= 63 + 76 - n(A \cap B)$ $n(A \cup B) + n(A \cap B) = 139$. . \Rightarrow n(A \cap B) = 139 - n(A \cup B) But, $n(A \cup B) \le 100$ $-n(A \cup B) \ge -100$ *.*.. $139 - n(A \cup B) \ge 139 - 100 = 39$ · . $n(A \cap B) \ge 39$ i.e., $39 \le n(A \cap B)$... Again, $A \cap B \subseteq A$, $A \cap B \subseteq B$ $n(A \cap B) \le n(A) = 63$ and *.*.. $n(A \cap B) \le n(B) = 76$ $n(A \cap B) \le 63$... Then, $39 \le n(A \cap B) \le 63 \Rightarrow 39 \le x \le 63$ Here 1, 2, $3 \in A \& 3, 5 \in B$ 31. $A \times B = \{1, 2, 3\} \times \{3, 5\}$ *.* . The remaining elements are : (1, 5), (2, 3), *.*.. (3, 5)32. A - B = A iff A and B have no element in common. $C = \{1, 3, 5, 7, ...\}, D = \{2, 3, 5, 7, 11, ...\}$ 33. $C \cap D = \{3, 5, 7, 11, \ldots\}$ Since, $8^n - 7n - 1 = (7 + 1)^n - 7n - 1$ 34. $= 7^{n} + {}^{n}C_{1}7^{n-1} + {}^{n}C_{2}7^{n-2} + \dots$ $= {}^{n}C_{2}7^{2} + {}^{n}C_{3}7^{3} + \dots + {}^{n}C_{n}7^{n},$ ("C₀ = "C_n, "C₁ = "C_{n-1} etc.) $= 49[{}^{n}C_{2} + {}^{n}C_{3}(7) + \dots + {}^{n}C_{n}7^{n-2}]$ $8^n - 7n - 1$ is a multiple of 49 for $n \ge 2$ *.*.. For n = 1, $8^n - 7n - 1 = 8 - 7 - 1 = 0$ For n = 2, $8^n - 7n - 1 = 64 - 14 - 1 = 49$ $8^n - 7n - 1$ is a multiple of 49 for $n \in N$ X contains elements which are multiples of 49 ... and clearly Y contains all multiples of 49. $X \subset Y$... $R_2 \subseteq A \times B$, so it is a relation from A to B. 36. Clearly, A is the set of all first elements in 37. ordered pairs in $A \times B$ and B is the set of all second elements in $A \times B$. Since, $(-1, 0) \in A \times A$ and $(0, 1) \in A \times A$ 38. ÷ $(-1, 0) \in A \times A \Rightarrow -1, 0 \in A$ and $(0, 1) \in A \times A \Longrightarrow 0, 1 \in A$ $\{-1, 0, 1\} \in A$ *.*.

- 39. The given set is a cartesian product containing 6 elements. Only A \times (B \cup C) contains 6 elements.
- 40. (1, 4), (2, 6), (3, 6) ∈ A × B
 ⇒ {1, 2, 3} ⊂ A and {4, 6} ⊂ B
 ∴ A has 3 elements and B has 2 elements.
- 41. n(A × A) = n(A). n(A) = 3² = 9
 So, the total number of subsets of A × A is 2⁹
 and a subset of A × A is a relation over the set A.
 - 42. The given relation is not reflexive and transitive but it is symmetric, because $x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$.
 - 43. Since R is an equivalence relation on set A, therefore $(a, a) \in R$ for all $a \in A$. Hence, R has at least n ordered pairs.
 - 44. We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$ $R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3);$

(5. 4)} Hence, $\operatorname{RoR}^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$

- 45. Number of relations on the set A = Number of subsets of $(A \times A) = 2^{n^2}$, [:: $n(A \times A) = n^2$].
- 46. Number of relations from A to $B = 2^{o(A).o(B)}$
- 47. Since, R = {(x, y) | x, y ∈ Z, $x^2 + y^2 ≤ 4$ } ∴ R = {(-2, 0), (-1, 0), (-1, 1), (0 -1) (0, 1), (0, 2), (0, -2) (1, 0), (1, 1), (2, 0)} Hence, Domain of R = {-2, -1, 0, 1, 2}.
- 48. For any a ∈ N, we find that a|a. therefore R is reflexive but R is not symmetric, because aRb does not imply that bRa.
- 49. The relation is not symmetric, because A ⊆ B does not imply that B ⊂ A. But it is antisymmetric because A ⊂ B and B ⊂ A ⇒ A = B
- 50. R is a relation from {11, 12, 13} to {8, 10, 12} defined by $y = x - 3 \Rightarrow x - y = 3$
- $\therefore \quad R = \{11, 8\}, \{13, 10\}.$ Hence, $R^{-1} = \{(8, 11), (10, 13)\}$
- 51. Let $(a, b) \in R$ Then, $(a, b) \in R \Rightarrow (b, a) \in R^{-1}$ $\Rightarrow (b, a) \in R$ [$\because R = R^{-1}$] So, R is symmetric.

55.
$$f(x) = ax^2 + bx + 2$$

 \therefore $f(1) = a(1)^2 + b(1) + 2 = a + b + 2$
But $f(1) = 3 \Rightarrow 3 = a + b + 2 \Rightarrow a + b = 1$ (i)
and $f(4) = a(4)^2 + b(4) + 2 = 16a + 4b + 2$
But $f(4) = 42 \Rightarrow 42 = 16a + 4b + 2$
 \therefore 40 = 16a + 4b \Rightarrow 4a + b = 10(ii)
By solving, (i) & (ii) a = 3 and b = -2

56. (gof)(1) = g(f(1)) = g(4) = 8,(gof)(2) = g(f(2)) = g(5) = 7and (gof)(3) = g(f(3)) = g(6) = 9

57.
$$a.f(x) + b.f\left(\frac{1}{x}\right) = \frac{1}{x} - 5$$

On replacing x by $\frac{1}{x}$, $b.f(x) + a.f\left(\frac{1}{x}\right) = x - 5$

Solving two equations,

$$f(x) = \frac{1}{a^2 - b^2} \left(\frac{a}{x} - bx\right) - \frac{5}{a + b}$$
$$f(2) = \frac{3(2b - 3a)}{2(a^2 - b^2)}$$

58. f(x) is defined for all $x \in \mathbb{R}$. So, $dom(f) = \mathbb{R}$.

Let
$$y = f(x) \Rightarrow y = \frac{x}{1+x^2}$$

$$x = \frac{1 \pm \sqrt{1-4y^2}}{2y}$$

...

...

For x to be real, $1 - 4y^2 \ge 0$ and $y \ne 0$ $\Rightarrow -\frac{1}{2} \le y \le \frac{1}{2}$ and $y \ne 0$

- 59. $f^{-1}(y) = \{x \in \mathbb{R}: y = f(x)\}$ $\Rightarrow f^{-1}(2) = \{x \in \mathbb{R}: 2 = f(x)\}$ $= \{x \in \mathbb{R}: x^2 - 3x + 4 = 2\}$ $= \{x \in \mathbb{R}: x^2 - 3x + 2 = 0\} = \{1, 2\}$
- 60. f(x) is defined for all $x \in R \{0\}$. So, dom(f) = R - $\{0\}$ Let $y = \frac{1+x^2}{x^2} \Rightarrow x = \pm \sqrt{\frac{1}{y-1}}$

For x to be real, $y - 1 \ge 0 \Rightarrow y \in (1, \infty)$

61.
$$f(x) = \frac{x-1}{x+1} \Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$$
$$\Rightarrow x = \frac{1+f(x)}{1-f(x)}$$
$$\therefore \quad f(\alpha x) = \frac{\alpha x-1}{\alpha x+1} = \frac{(\alpha+1)f(x)+\alpha-1}{(\alpha-1)f(x)+\alpha+1}$$

62.
$$f(x) = x + \frac{1}{x} \Rightarrow f(x^3) = x^3 + \frac{1}{x^3}$$

 \therefore $[f(x)]^3 = \left(x + \frac{1}{x}\right)^3 = \left(x^3 + \frac{1}{x^3}\right) + 3\left(x + \frac{1}{x}\right)$
 \therefore $[f(x)]^3 = f(x^3) + 3f(x)$
 \therefore $[f(x)]^3 = f(x^3) + 3f\left(\frac{1}{x}\right) \Rightarrow \lambda = 3$
63. As f (a) is not unique,
 \therefore f is not a function.
64. $Dom(f) = R - \left\{-\frac{2}{3}\right\}$
For Range(f), let $y = f(x) = \frac{1}{3x + 2}$
 \therefore $3x + 2 = \frac{1}{y} \Rightarrow x = \frac{1}{3}\left(2 - \frac{1}{y}\right)$
 x is real if $y \neq 0$. Hence, $R_f = R - \{0\}$
65. $f(x)$ is defined for $x^2 + x - 6 \neq 0$, i.e., $x \neq -3$, 2
 \therefore $Dom(f) = R - \{-3, 2\}$
Let $y = \frac{x^2 - 3x + 2}{x^2 + x - 6} = \frac{x - 1}{x + 3}$
 $\Rightarrow x = \frac{3y + 1}{y - 1}$
 x is real for $y - 1 \neq 0$, i.e., $y \neq 1$
Hence, range(f) = $R - \{1\}$
66. $f(x)$ is defined, if
 $x^2 - 5x + 6 \ge 0$ and $2x + 8 - x^2 \ge 0$
 $\Rightarrow (x - 2)(x - 3) \ge 0$ and $(x - 4)(x + 2) \le 0$
 \therefore $x \in (-\infty, 2] \cup [3, \infty)$ and $x \in [-2, 4]$
 \therefore $x \in [-2, 2] \cup [3, 4]$
67. The general expression for the function
satisfying $f(x + y) = f(x) f(y)$ for all $x, y \in R$ is
 $f(x) = [f(1)]^x = a^x$ for all $x, y \in R$. $[\because f(1)] = a^x$
68. If $f(x) = \sqrt{1 - x + x^2} - \sqrt{1 - x + x^2}$, then
 $f(-x) = \sqrt{1 - x + x^2} - \sqrt{1 - x + x^2}$, then
 $f(-x) = -f(x)$
So, $f(x)$ is an odd function.
69. $f(x) = \frac{x + 3}{4x - 5}$
 \therefore $f(t) = \frac{t + 3}{4x - 5} = \frac{(\frac{3 + 5x}{4x - 1}) + 3}{4(\frac{3 + 5x}{4x - 5} - 5}$

(4x-1)

10.
$$f(x) = f(x + 1)$$

∴ $x^2 - 2x + 3 = (x + 1)^2 - 2(x + 1) + 3$
∴ $x^2 - 2x = x^2 + 2x + 1 - 2x - 2 \Rightarrow x = 1/2$
71. For domain, take $\frac{x}{1+x} \ge 0$
∴ $D_f = (-\infty, -1) \cup [0, \infty)$
72. $f(x) = \frac{x-2}{x-3}, x \ne 3$
Let $y = f(x) \Rightarrow y = \frac{x-2}{x-3}$
 $\Rightarrow x = \frac{2-3y}{1-y}$
 $\Rightarrow y \ne 1 \Rightarrow$ Range of $f(x)$ is $R - \{1\}$
So, f is onto
For one-one, let $f(x_1) = f(x_2)$
 $\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3} \Rightarrow x_1 = x_2$
Hence, f is one-one.
74. Here, $f(x) = \sqrt{x^2 + x + 1}$
 $\Rightarrow y^2 = x^2 + x + 1$
 $\Rightarrow y^2 = x^2 + x + 1$
 $\Rightarrow x^2 + x + (1 - y^2) = 0$
 $\Rightarrow x = -\frac{1 \pm \sqrt{1 - 4(1 - y^2)}}{2}$
 $\Rightarrow x = -\frac{1 \pm \sqrt{4y^2 - 3}}{2}$
For x real, $4y^2 - 3 \ge 0$
∴ $y \ge \pm \frac{\sqrt{3}}{2}$
∴ $R_f = \left[\frac{\sqrt{3}}{2}, \infty\right]$
75. Let $f(x) = x^2 + \sin^2 x$
Here, $f(-x) = f(x)$
∴ $f(x)$ is an even function.
76. $f(f(x)) = \frac{1}{1 - f(x)} = \frac{1}{1 - \frac{1}{1 - x}} = \frac{x - 1}{x}$
∴ $f[f(f(x))] = f\left(\frac{x - 1}{x}\right) = \frac{x}{x - x + 1} = x$
78. Let $x_1, x_2 \in R$, then $f(x_1) = \cos x_1$,
& & $f(x_2) = \cos x_2$, Now $f(x_1) = f(x_2)$
 $\Rightarrow \cos x_1 = \cos x_2 \Rightarrow x_1 = 2n\pi \pm x_2$
 $\Rightarrow x_1 \neq x_2$,

(Y) (Y 11)

it is not one-one. . . Again the value of f-image of x lies in between -1 to 1 \Rightarrow f[R] ={f(x) : $-1 \le f(x) \le 1$ } So other numbers of co-domain (besides -1 and 1) is not f-image. $f[R] \in R$, so it is also not onto. So this mapping is neither one-one nor onto. 79. f(-1) = f(1) = 1function is many-one function. ... f is neither one-one nor onto. *.*.. $f'(x) = \frac{1}{(1+x)^2} > 0 \ \forall x \in [0,\infty)$ 80. and range $\in [0,1)$ \Rightarrow function is one-one but not onto. Domain of $f(x) = R - \{3\}$, 81. and for Range : $x \neq 3 \Rightarrow x < 3$ or x > 3Now, $x < 3 \Rightarrow x - 3 < 0 \Rightarrow |x - 3| = -(x - 3)$ $\Rightarrow f(x) = \frac{-(x-3)}{x-3} = -1$ Similarly, for x > 3, f(x) = 1Range (f) = $\{1, -1\}$. 82. Here, $f(\theta) = \sin\theta (\sin\theta + \sin 3\theta)$ $=\sin\theta(\sin\theta + 3\sin\theta - 4\sin^3\theta)$ $=4\sin^2\theta(1-\sin^2\theta)$ $=4\sin^2\theta\cos^2\theta=(\sin 2\theta)^2$ *.*.. $f(\theta) \ge 0$ for all real θ . Given, $(gof)\left(-\frac{5}{3}\right) - (fog)\left(-\frac{5}{3}\right)$ 83. $=g\left\{f\left(\frac{-5}{3}\right)\right\}-f\left\{g\left(\frac{-5}{3}\right)\right\}$ $= g(-2) - f\left(\frac{5}{3}\right) = 2 - 1 = 1$ Let $f(x_1) = f(x_2) \Longrightarrow [x_1] = [x_2] \Longrightarrow x_1 = x_2$ 84. {For example, if $x_1 = 1.4$, $x_2 = 1.5$, then [1.4] = [1.5] = 1*.*. f is not one-one. Also, f is not onto as its range I (set of integers) is a proper subset of its co-domain R. [x] = I (Integers only). 85. 86. $x^2 - 6x + 7 = (x - 3)^2 - 2$

36

Here, minimum value is -2 and maximum ∞ . Hence, range of function is $[-2, \infty)$.

87.
$$1 + x \ge 0$$

 $\Rightarrow x \ge -1; 1 - x \ge 0$
 $\Rightarrow x \le 1, x \ne 0$
Hence, domain is $[-1, 1] - \{0\}$.
88. $\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x} = \frac{\pi}{2}$ holds,
for x lying in $[0, 1]$
89. $y = \sin^{-1}\left[\log_3\left(\frac{x}{3}\right)\right]$
 $\therefore -1 \le \log_3\left(\frac{x}{3}\right) \le 1$
 $\therefore \frac{1}{3} \le \frac{x}{3} \le 3$
 $\therefore 1 \le x \le 9$
 $\therefore x \in [1, 9]$
90. We have $f(x + y) + f(x - y)$
 $= \frac{1}{2}\left[a^{x+y} + a^{-x-y} + a^{x-y} + a^{-x+y}\right]$
 $= \frac{1}{2}\left[a^{x}(a^{y} + a^{-y}) + a^{-x}(a^{y} + a^{-y})\right]$
 $= \frac{1}{2}(a^{x} + a^{-x})(a^{y} + a^{-y}) = 2f(x)f(y)$
Competitive Thinking
1. Since $2^m - 2^n = 56 = 8 \times 7 = 2^3 \times 7$
 $\Rightarrow 2^n(2^{m-n} - 1) = 2^3 \times 7$
 $\therefore n = 3$ and $2^{m-n} = 8 = 2^3$
 $\Rightarrow m - n = 3 \Rightarrow m - 3 = 3 \Rightarrow m = 6$
 $\therefore m = 6, n = 3$
2. $O(S) = O\left(\bigcup_{i=1}^{30} A_i\right) = \frac{1}{10}(5 \times 30) = 15$
Since, element in the union S belongs to 10 of A_i s
Also, $O(S) = O\left(\bigcup_{j=1}^{9} B_j\right) = \frac{3n}{9} = \frac{n}{3}$
 $\therefore \frac{n}{3} = 15 \Rightarrow n = 45$
3. $x^2 = 16 \Rightarrow x = \pm 4$
and $2x = 6 \Rightarrow x = 3$
There is no value of x which satisfies both the above equations. Thus, $A = \phi$.
4. Since, $y = e^x$ and $y = x$ do not meet for any $x \in \mathbb{R}$
 $\therefore A \cap B = \phi$

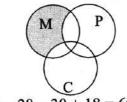
5. Since, $4^n - 3n - 1 = (3 + 1)^n - 3n - 1$ $= 3^{n} + {}^{n}C_{1}3^{n-1} + {}^{n}C_{2}3^{n-2} + \dots +$ ${}^{n}C_{n-1}3 + {}^{n}C_{n} - 3n - 1$ = ${}^{n}C_{2}3^{2} + {}^{n}C_{3}3^{3} + \dots + {}^{n}C_{n}3^{n}$ $\dots [{}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1} \text{ etc}]$ $=9[{}^{n}C_{2} + {}^{n}C_{3}(3) + \dots + {}^{n}C_{n}3^{n-1}]$ $4^n - 3n - 1$ is a multiple of 9 for $n \ge 2$ For n = 1, $4^n - 3n - 1 = 4 - 3 - 1 = 0$, For n = 2, $4^n - 3n - 1 = 16 - 6 - 1 = 9$ $4^n - 3n - 1$ is a multiple of 9 for all $n \in N$... X contains elements, which are multiples of 9, ... and clearly Y contains all multiples of 9. $X \subseteq Y$ i.e., $X \cup Y = Y$. ÷ n(A) = 40% of 10,000 = 4,0006. n(B) = 20% of 10,000 = 2,000n(C) = 10% of 10,000 = 1,000 $n (A \cap B) = 5\% \text{ of } 10,000 = 500$ $n (B \cap C) = 3\% \text{ of } 10,000 = 300$ $n(C \cap A) = 4\%$ of 10,000 = 400 $n(A \cap B \cap C) = 2\%$ of 10,000 = 200 We want to find, $\mathbf{n}(\mathbf{A} \cap \mathbf{B}^{\mathsf{c}} \cap \mathbf{C}^{\mathsf{c}}) = \mathbf{n}[\mathbf{A} \cap (\mathbf{B} \cup \mathbf{C})^{\mathsf{c}}]$ $= n(A) - n[A \cap (B \cup C)]$ $= n(A) - n[(A \cap B) \cup (A \cap C)]$ $= n(A) - [n(A \cap B) + n(A \cap C)]$ $- n(A \cap B \cap C)$ = 4000 - [500 + 400 - 200]=4000-700=3300.7. $(A-B) \cup (B-A) = (A \cup B) - (A \cap B).$ $\mathbf{R} \times (\mathbf{P}^c \cup \mathbf{Q}^c)^c = \mathbf{R} \times [(\mathbf{P}^c)^c \cap (\mathbf{Q}^c)^c]$ 8. $= \mathbf{R} \times (\mathbf{P} \cap \mathbf{Q}) = (\mathbf{R} \times \mathbf{P}) \cap (\mathbf{R} \times \mathbf{Q})$ The number of non- empty subsets $= 2^n - 1$ 10. $= 2^4 - 1$ \dots [\therefore n = 4] = 15. $N_5 \cap N_7 = N_{35}$, 12. [:: 5 and 7 are relatively prime numbers]. n(C) = 224, n(H) = 240, n(B) = 33613. $n(H \cap B) = 64, n(B \cap C) = 80$ $n(H \cap C) = 40$, $n(C \cap H \cap B) = 24$ $\mathbf{n}(\mathbf{C}^{c} \cap \mathbf{H}^{c} \cap \mathbf{B}^{c}) = \mathbf{n}(\mathbf{C} \cup \mathbf{H}^{\cdot} \cup \mathbf{B})^{c}]$ $= n(U) - n(C \cup H \cup B)$ $= 800 - [n(C) + n(H) + n(B) - n(H \cap C)]$ $-n(H \cap B) - n(C \cap B) + n(C \cap H \cap B)$ = 800 - [224 + 240 + 336 - 64 - 80 - 40 + 24]= 800 - 640 = 160

- 14. Given n(N) = 12, n(P) = 16, n(H) = 18, $n(N \cup P \cup H) = 30$ and $n(N \cap P \cap H) = 0$ From, $n(N \cup P \cup H)$ $= n(N) + n(P) + n(H) - n(N \cap P) - n(P \cap H)$ $-n(N \cap H) + n(N \cap P \cap H)$ ∴ $n(N \cap P) + n(P \cap H) + n(N \cap H) = 16$
- $\therefore \quad n(N \cap P) + n(P \cap H) + n(N \cap H) = 10$ Now, number of pupils taking two subjects = $n(N \cap P) + n(P \cap H) + n(N \cap H)$ $- 3n(N \cap P \cap H)$

$$= 16 - 0 = 16.$$

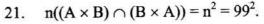
- 15. Given set is $\{(a, b) : 2a^2 + 3b^2 = 35, a, b \in Z\}$ We can see that, $2(\pm 2)^2 + 3(\pm 3)^2 = 35$ and $2(\pm 4)^2 + 3(\pm 1)^2 = 35$
- :. (2, 3), (2, -3), (-2, -3), (-2, 3), (4, 1), (4, -1), (-4, -1), (-4, 1) are 8 elements of the set.
- \therefore n = 8.
- 16. Let the original set contains (2n + 1) elements, then subsets of this set containing more than n elements, i.e., subsets containing (n + 1)elements, (n + 2) elements, (2n + 1)elements.
- $\therefore \quad \text{Required number of subsets} \\ &= {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \dots + {}^{2n+1}C_{2n} + {}^{2n+1}C_{2n+1} \\ &= {}^{2n+1}C_n + {}^{2n+1}C_{n-1} + \dots + {}^{2n+1}C_1 + {}^{2n+1}C_0 \\ &= {}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_{n-1} + {}^{2n+1}C_n \\ &= \frac{1}{2} \Big[(1+1)^{2n+1} \Big] = \frac{1}{2} [2^{2n+1}] = 2^{2n} .$
- 18. $A = \{4, 8, 12, 16, 20, 24,\}$ $B = \{6, 12, 18, 24, 30,\}$ $\therefore A \subset B = \{12, 24, ...\} = \{x : x \text{ is a multiple of } 12\}.$
- 19. n(M alone)= $n(M) - n(M \cap C) - n(M \cap P) + n(M \cap P \cap C)$

 $A-B \quad A-(A \cap B)$



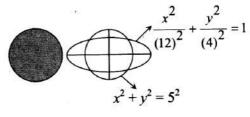
$$= 100 - 28 - 30 + 18 = 60$$

- 20. $A B = A (A \cap B)$ is correct. $A = (A \cap B) \cup (A - B)$ is correct. (3) is false.
- \therefore (1) and (2) are true.



- 22. $n(A \cup B) = n(A) + n(B) n(A \cap B)$ = 12 + 9 - 4 = 17 Now, $n((A \cup B)^{c}) = n(U) - n(A \cup B)$ = 20 - 17 = 3
- 23. $n(A \cup B) = n(A) + n(B) n(A \cap B)$ = 3 + 6 - n(A \cap B)
 - Since, maximum number of elements in $A \cap B = 3$
- $\therefore \quad \text{Minimum number of elements in} \\ A \cup B = 9 3 = 6$

24. A = Set of all values
$$(x, y) : x^2 + y^2 = 25 = 5^2$$



$$\mathbf{B} = \frac{x^2}{144} + \frac{y^2}{16} = 1 \text{ i.e., } \frac{x^2}{(12)^2} + \frac{y^2}{(4)^2} = 1$$

Clearly, $A \cap B$ consists of four points.

25. Let number of newspapers be x. If every students reads one newspaper, the number of students would be x(60) = 60x. Since, every students reads 5 newspapers

Numbers of students =
$$\frac{x \times 60}{5}$$
 = 300, x = 25

26.
$$n[(A \cap B)' \cap A]$$

= $n[(A' \cup B') \cap A]$
....[By DeMorgan's law]
= $n(A' \cap A) \cup n(B' \cap A)$
....[By distributive law]
= $n(A) - n(A \cap B) = 8 - 2 = 6$

- 27. A (A B)= $A \cap (A \cap B^c)^c = A \cap (A^c \cup B)$ = $\phi \cup (A \cap B) = A \cap B$
- 28. $n(X \cap Y) = 12$ and these are 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200
- 29. $A = B \cap C, B = C \cap A$ $\Rightarrow A, B \text{ are equivalent sets.}$[:: A and B are interchangeable

in both equations]

30.
$$A \cap X = B \cap X = \phi$$

 \therefore A and X, B and X are disjoint sets
Also, $A \cup X = B \cup X \Rightarrow A = B$

32.
$$n(A - B) = n(A) - n(A \cap B) = 25 - 10 = 15$$

33.

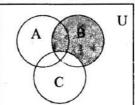
$$A = B = U$$
Since, $A - B = A - (A \cap B)$
and $B - A = B - (A \cap B)$
Option (D) is the correct answer.
34. $A = \{x \mid x \text{ is a root of } x^2 - 1 = 0\}$
 $= \{x \mid x \text{ is a root of } (x - 1)(x + 1) = 0\}$
 $\Rightarrow x = \pm 1$
 $B = \{x \mid x \text{ is a root of } x^2 - 2x + 1 = 0\}$
 $= \{x \mid x \text{ is a root of } (x - 1)^2 = 0\}$
 $\Rightarrow x = 1$
 $\Rightarrow A \cup B = A$
35. i. $A \cup B \cup C$
ii. $(A \cap B^c \cap C^c)$

Power set is the set of all subsets.

 $n(A) = 5 \Rightarrow n(P(A)) = 2^5 = 32$

31.

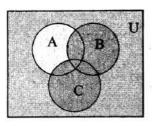
v. $(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) \cap (\mathbf{A} \cap \mathbf{B}^c \cap \mathbf{C}^c)^c \cap \mathbf{C}^c = \mathbf{B} \cap \mathbf{C}^c$



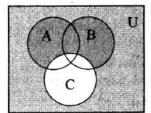
	36.	$n(X) = 60, n(C) = 25, n(T) = 20, n(C \cap T) = 10$
	.:.	$n(C \cup T) = n(C) + n(T) - n(C \cap T)$
		= 25 + 20 - 10 = 35
	<i>:</i> :.	$n (C \cup T)' = n (X) - n (C \cup T) = 60 - 35 = 25$
	37.	$ 2x+3 < 7 \Rightarrow -7 < 2x+3 < 7$
		$\Rightarrow -10 < 2x < 4 \Rightarrow -5 < x < 2 \Rightarrow 0 < x + 5 < 7$
	38.	$n(S \cup P \cup D) = 265, n(S) = 200, n(D) = 110,$
		$n(P) = 55, n(S \cap D) = 60, n(S \cap P) = 30,$
		$n(S \cap D \cap P) = 10,$
		$\mathbf{n}(\mathbf{S} \cup \mathbf{P} \cup \mathbf{D}) = \mathbf{n}(\mathbf{S}) + \mathbf{n}(\mathbf{D}) + \mathbf{n}(\mathbf{P}) - \mathbf{n}(\mathbf{S} \cap \mathbf{D})$
-		$-n(D \cap P) - n(P \cap S) + n(S \cap D \cap P)$
		265 = 200 + 110 + 55 - 60 - 30
		$-n(\mathbf{P} \cap \mathbf{D}) + 10$
	ŊĠ	$n(P \cap D) = 285 - 265 = 20$
	· · · · · · · · · · · · · · · · · · ·	
	1.	$\mathbf{n}(\mathbf{P} \cap \mathbf{D}) - \mathbf{n}(\mathbf{P} \cap \mathbf{D} \cap \mathbf{S}) = 20 - 10 = 10$
	39.	Given $A = \{2, 4, 6, 8\};$
		$\mathbf{R} = \{(2, 4)(4, 2) (4, 6) (6, 4)\}$
	($(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}$ and also $\mathbb{R}^{-1} = \mathbb{R}$.
		Hence, R is symmetric.
	40.	$\mathbf{R} = \mathbf{A} \times \mathbf{B}.$
/	10.	AL

- 41. For any a ∈ R, we have a ≥ a. Therefore the relation R is reflexive, but it is not symmetric, as (2, 1) ∈ R but (1, 2) ∉ R. The relation R is transitive also, because (a, b) ∈ R, (b, c) ∈ R imply that a ≥ b and b ≥ c which is turn imply that a ≥ c.
- 43. Here, (3, 3), (6, 6), (9, 9), (12, 12), [Reflexive];
 (3, 6), (6, 12), (3, 12), [Transitive].
 Hence, reflexive and transitive only.
- 44. Given A = {1, 2, 3, 4}
 R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)}
 (2, 3) ∈ R but (3, 2) ∉ R.
 Hence, R is not symmetric.
 R is not reflexive as (1, 1) ∉ R.
 R is not a function as (2, 4) ∈ R and (2, 3) ∈ R.
 R is not transitive as (1, 3) ∈ R and (3, 1) ∈ R
 but (1, 1) ∉ R.

iii. $(A \cap B^c \cap C^c)^c$



C



= 2

			\Rightarrow 0. C. D. of 0, $a - 2$
÷	R is symmetric,	.:.	R is symmetric.
	Again, $1R\frac{1}{2}$ and $\frac{1}{2}R1$ but $\frac{1}{2} \neq 1$		Again, let aRb and bRc
	Again, $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$.	G. C. D. of a, $b = 2$ $\downarrow \not\Rightarrow$ G. C. D of
<i>:</i> .	R is not anti-symmetric.		and G. C. D. of b, $c = 2 \int$
	Further, 1 R 2 and 2 R 3 but 1 R 3,		R is not transitive.
	[:: 1-3 =2>1]	55.	Here, $R = \{(x, y) \in W \times W : \text{the words } x\}$
<i>:</i> .	R is not transitive.	55.	have at least one letter in common}
		8.9	R is reflexive as the words x and x has
47.	Total number of reflexive relations in a set		letters in common.
	with n elements $= 2^{n}$.		Hence, R is reflexive.
	Therefore, total number of reflexive relation		Also, if $(x, y) \in \mathbb{R}$ i.e., x and y have a contract of the second se
	set with 4 elements $= 2^4$.		letter, then y and x also have a let
48.	$A - B = \{a\}, B \cap C = \{c, d\}$		common
∴.	$(A - B) \times (B \cap C) = \{a\} \times \{c, d\} = \{(a, c), (a, d)\}$		R is symmetric.
		007	R is not transitive as $(x, y) \in \mathbb{R}$ and (y, z)
49.	For any $a \in N$, we find $a a$, therefore R is	DGI	need not imply $(x, z) \in \mathbb{R}$
	reflexive.		For example, let $x = CANE$, $y = NES$
	But, R is not symmetric, because aRb does not		z = WITH
	imply that bRa.		then $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$, but (x, z)
50.	$r = \{(a, b) a, b \in R and a - b + \sqrt{3} is an$:	R is reflexive and symmetric bu
50.	irrational no.}		transitive.
		56.	For reflexive, $\theta = \phi$, so sec ² θ – tan ² $\theta = 1$,
	Here, r is reflexive as $aRa = a - a + \sqrt{3} = \sqrt{3}$		R is reflexive.
	which is an irrational no.		For symmetric, $\sec^2\theta - \tan^2\phi = 1$
	$\sqrt{3}$ r1 = $\sqrt{3}$ - 1 + $\sqrt{3}$ = 2 $\sqrt{3}$ - 1, which is an		so, $(1 + \tan^2\theta) - (\sec^2\phi - 1) \Rightarrow \sec^2\phi - \tan^2\phi$
	irrational number.	<u>.</u>	R is symmetric $\psi = 1$
	But $1r\sqrt{3} = 1 - \sqrt{3} + \sqrt{3} = 1$ which is not an	••••	For transitive, Let $\sec^2\theta - \tan^2\phi = 1$ (i
	irrational number.		and $\sec^2 \phi - \tan^2 \gamma = 1$
			$1 + \tan^2 \phi - \tan^2 \gamma = 1$
•••	$\sqrt{3}$ r 1 $\Rightarrow \frac{1}{\sqrt{3}}$	••	$\Rightarrow \sec^2\theta - \tan^2\gamma = 1 \qquad \dots [From (i)]$
	vs		\Rightarrow see $0 - \tan \gamma - 1$ [From (i)] R is transitive.
÷	r is not symmetric. Also, r is not transitive.	ai a	K is transitive.
		57.	Given, $f(x) = \cos(\log x) \Rightarrow f(y) = \cos(\log x)$
	Since, $\sqrt{3}$ r 1 and 1 r $2\sqrt{3} \neq \sqrt{3}$ r $2\sqrt{3}$		Then, $f(x).f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$
	Option (B) is the correct answer.		$1 \ln(1, 1(x), 1(y)) = \frac{1}{2} \left[1 \left(\frac{1}{y} \right) + 1(xy) \right]$
51.	$x^2 - 4x^2 + 3x^2 = 0$		$= \cos(\log x)\cos(\log y) -$
<i>.</i> :.	$x\mathbf{R}x \Rightarrow \mathbf{Reflexive}$		
60	I (in (D) and indiates (a. D) at A vi D		$\frac{1}{2}\left[\cos\left(\log\frac{x}{y}\right) + \cos\left(\log\frac{x}{y}\right)\right]$
52.	In option (D), ordered pair (a, d) \notin A × B. Thus it is not a relation from A to P		
	Thus it is not a relation from A to B.		$= \cos(\log x)\cos(\log y) -$
53.	A relation is equivalence if it is reflexive,		$\frac{1}{2}[2\cos(\log x)\cos(\log x)]$
	symmetric and transitive.	I	2. 2. 2.
	DGT Group - Tuitions (Feed Concepts) XIth – XIIth	JEE CFT	NEET Call : 9920154035 / 8169861448

45.

...

46.

...

...

 $A = \{2, 4, 6\}; B = \{2, 3, 5\}$

|a - a| = 0 < 1

a Ra $\forall a \in R$

R is reflexive.

 $A \times B$ contains $3 \times 3 = 9$ elements.

Hence, number of relations from A to $B = 2^9$.

Again, a R b \Rightarrow $|a-b| \le 1 \Rightarrow |b-a| \le 1 \Rightarrow bRa$

Let aRb G. C. D. of a, b = 2÷. i.e., (a, b) = 2 \Rightarrow (b, a) = 2 \Rightarrow G. C. D. of b, a = 2 R is symmetric nd bRc ≠ G. C. D of (a, c) = 2 c = 2e. $\in \mathbf{W} \times \mathbf{W}$: the words x and y letter in common} s the words x and x have all n. xive. R i.e., x and y have a common and x also have a letter in re as $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$ $(x, z) \in \mathbb{R}$ x = CANE, y = NEST and nd $(y, z) \in \mathbb{R}$, but $(x, z) \notin \mathbb{R}$ and symmetric but not $= \phi$, so sec² θ - tan² θ = 1, $\sec^2\theta - \tan^2\phi = 1$ $(\sec^2 \phi - 1) \Rightarrow \sec^2 \phi - \tan^2 \theta = 1$ et $\sec^2\theta - \tan^2\phi = 1$ (i) v = 1= 1[From (i)] = 1 $s(\log x) \Rightarrow f(y) = \cos(\log y)$ $\frac{1}{2} \left| f\left(\frac{x}{y}\right) + f(xy) \right|$ $s(\log y)$ $\frac{1}{2} \left| \cos \left(\log \frac{x}{y} \right) + \cos \left(\log xy \right) \right|$ $(\log y) \frac{1}{2}[2\cos(\log x)\cos(\log y)]=0$

Since, G. C. D. of a and a is 'a'

if a $\neq 2$, then G. C. D. $\neq 2$

R is not reflexive.

54.

. .

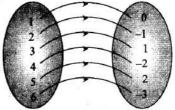
· · ·

58.
$$f[f(\cos 2\theta)] = f\left[\frac{1-\cos 2\theta}{1+\cos 2\theta}\right] = f(\tan^2 \theta)$$

 $= \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$
59. $f(x+1) - f(x) = 8x + 3$
 $\Rightarrow [b(x+1)^2 + c(x+1) + d] - (bx^2 + cx + d)$
 $= 8x + 3$
 $\Rightarrow (2b)x + (b + c) = 8x + 3$
 $\Rightarrow 2b = 8, b + c = 3$
 $\Rightarrow b = 4, c = -1$
60. $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$
 $f(x) = \cos[9x] + \cos(-10x)$
 $[\because \pi = 3.14,$
 $\therefore \quad [9.85] = 9 \text{ and } [-9.85] = -10]$
 $= \cos(9x) + \cos(10x)$
 $= 2\cos\left(\frac{19x}{2}\right)\cos\left(\frac{x}{2}\right)$
 $\therefore \quad f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{19\pi}{4}\right)\cos\left(\frac{\pi}{4}\right);$
 $\therefore \quad f\left(\frac{\pi}{2}\right) = 2\times\frac{-1}{\sqrt{2}}\times\frac{1}{\sqrt{2}} = -1$
61. $f(x) = f(-x) \Rightarrow f(0 + x) = f(0 - x) \text{ is symmetrical about } x = 0.$
 $\therefore \quad f(2 + x) = f(2 - x) \text{ is symmetrical about } x = 2.$
62. Let $f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{x^2 + 1 - 2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$
 $\therefore \quad x^2 + 1 > 1;$
 $\therefore \quad \frac{2}{x^2 + 1} \le 2$
 $\text{So } 1 - \frac{2}{x^2 + 1} \ge 1 - 2;$
 $\therefore \quad -1 \le f(x) < 1$
 Thus, $f(x)$ has the minimum value equal to -1.
63. We have $f(x) = (x - 1) (x - 2) (x - 3)$ and

- 63. We have f(x) = (x 1) (x 2) (x 3) and $f(1) = f(2) = f(3) = 0 \Rightarrow f(x)$ is not one-one. For each $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that f(x) = y. Therefore f is onto. Hence, $f : \mathbb{R} \to \mathbb{R}$ is onto but not one-one.
- 64. The total number of injective functions from a set A containing 3 elements to a set B containing 4 elements is equal to the total number of arrangements of 4 by taking 3 at a time i.e., ${}^{4}P_{3} = 24$.

- 65. Function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = e^x$. Let $x_1, x_2 \in \mathbb{R}$ and $f(x_1) = f(x_2)$ or $e^{x_1} = e^{x_2}$ or $x_1 = x_2$. Therefore f is one-one. Let $f(x) = e^x = y$. Taking log on both sides, we get $x = \log y$. We know that negative real numbers have no pre-image or the function is not onto and zero is not the image of any real number. Therefore function f is into.
- 66. $f'(x) = 2 + \cos x > 0$. So, f(x) is strictly monotonic increasing so, f(x) is one-to-one and onto.
- 67. $f: N \to I$ f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5) = 2and f(6) = -3 so on.



In this type of function every element of set A has unique image in set B and there is no element left in set B. Hence f is one-one and onto function.

- 68. Let f(x) be periodic with period T. Then, f(x + T) = f(x) for all $x \in R$ $\Rightarrow x + T - [x + T] = x - [x]$. for all $x \in R$ $\Rightarrow x + T - x = [x + T] - [x]$ $\Rightarrow [x + T] - [x] = T$ for all $x \in R$ $\Rightarrow T = 1, 2, 3, 4, \dots$ The smallest value of T satisfying f(x + T) = f(x) for all $x \in R$ is 1. Hence, f(x) = x - [x] has period 1.
- 69. Here, x + 3 > 0 and $x^2 + 3x + 2 \neq 0$ ∴ x > -3 and $(x + 1) (x + 2) \neq 0$, i.e., $x \neq -1, -2$. ∴ Domain = $(-3, \infty) - \{-1, -2\}$.
- 70. f(x) is to be defined when $x^2 1 > 0$ $\Rightarrow x^2 > 1$, $\Rightarrow x < -1$ or x > 1 and 3 + x > 0

$$\therefore$$
 $x > -3$ and $x \neq -2$

:.
$$D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty).$$

- 71. The quantity under root is positive, when $-1 \sqrt{3} \le x \le -1 + \sqrt{3}$.
- 72. The function $f(x) = \sqrt{\log(x^2 6x + 6)}$ is defined, when $\log(x^2 - 6x + 6) \ge 0$ $\Rightarrow x^2 - 6x + x \ge 1 \Rightarrow (x - 5) (x - 1) \ge 0$ This inequality holds, if $x \le 1$ or $x \ge 5$. Hence, the domain of the function will be $(-\infty, 1] \cup [5, \infty)$.

73. $-1 \le 1 + 3x + 2x^2 \le 1$ **Case I**: $2x^2 + 3x + 1 \ge -1$; $2x^2 + 3x + 2 \ge 0$ $x = \frac{-3 \pm \sqrt{9-16}}{6} = \frac{-3 \pm i\sqrt{7}}{6}$ (imaginary). **Case II** : $2x^2 + 3x + 1 \le 1$ $\Rightarrow 2x^2 + 3x \le 0 \Rightarrow 2x\left(x + \frac{3}{2}\right) \le 0$ $\Rightarrow \frac{-3}{2} \le x \le 0 \Rightarrow x \in \left| -\frac{3}{2}, 0 \right|$ In case I, we get imaginary value hence, rejected Domain of function = $\left|\frac{-3}{2}, 0\right|$. *.*.. To define f(x), $9 - x^2 > 0 \Rightarrow |x| < 3$ 74. $\Rightarrow -3 < x < 3$,(i) and $-1 \leq (x-3) \leq 1$ $\Rightarrow 2 \leq x \leq 4$(ii) From (i) and (ii), $2 \le x < 3$ i.e., [2, 3). $\mathbf{f}(x) = \frac{x+2}{|x+2|}$ 75. $\mathbf{f}(x) = \begin{cases} -1, & x < -2 \\ 1, & x > -2 \end{cases}$... Range of f(x) is $\{-1, 1\}$. Since maximum and minimum values of 76. $\cos - \sin x$ are $\sqrt{2}$ and $-\sqrt{2}$ respectively, therefore range of f(x) is $[-\sqrt{2}, \sqrt{2}]$. Let $\frac{x^2 + 34x - 71}{x^2 + 2x - 7} = y$ 77. $\Rightarrow x^{2} (1 - y) + 2(17 - y) x + (7y - 71) = 0$ For real value of x, $B^2 - 4AC \ge 0$ $\Rightarrow y^2 - 14y + 45 \ge 0 \Rightarrow y \ge 9, y \le 5.$ Here, $f(x) = \log \frac{1+x}{1-x}$ 78. and $f(-x) = \log\left(\frac{1-x}{1+x}\right) = \log\left(\frac{1+x}{1-x}\right)^{-1}$ $= -\log\left(\frac{1+x}{1-x}\right) = -f(x) = f(-x)$ \Rightarrow f(x) is an odd function. 79. $y = \frac{x+2}{x-1} \Rightarrow x = \frac{3}{v-1} + 1 = \frac{y+2}{v-1} = f(y).$ Given, $f(x) = 2^{x(x-1)}$ 80. $\Rightarrow x(x-1) = \log_2 f(x)$ $\Rightarrow x^2 - x - \log_2 f(x) = 0$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_2 f(x)}}{2}$$
Only $x = \frac{1 + \sqrt{1 + 4 \log_2 f(x)}}{2}$ lies in the domain

$$\therefore f^{-1}(x) = \frac{1}{2} [1 + \sqrt{1 + 4 \log_2 x}].$$
81. Let $f(x) = y \Rightarrow x = f^{-1}(y)$
Hence, $f(x) = y \Rightarrow x = f^{-1}(y) = x = \frac{y + 5}{3}$

$$\Rightarrow x = \frac{y + 5}{3} \Rightarrow f^{-1}(y) = x = \frac{y + 5}{3}$$
Also f is one-one and onto, so f^{-1} exists and is
given by $f^{-1}(x) = \frac{x + 5}{3}$.
82. $f(x) = \frac{\alpha x}{x + 1};$

$$f(f(x)) = f\left(\frac{\alpha x}{x + 1}\right) = \frac{\alpha\left(\frac{\alpha x}{x + 1}\right)}{\frac{\alpha x}{x + 1} + 1}$$
But $f(f(x)) = x$

$$\therefore \frac{\alpha^2 x}{\alpha x + x + 1} = x$$
L.H.S. Put $\alpha = -1$,

$$\therefore \frac{(-1)^2 x}{(-1)x + x + 1} = \frac{x}{-x + x + 1} = x;$$

$$\therefore \alpha = -1$$
83. $f(x) = \log\left[\frac{1 + x}{1 - x}\right]$

$$\therefore f\left(\frac{2x}{1 + x^2}\right) = \log\left[\frac{1 + \frac{2x}{1 - x^2}}{1 - \frac{2x}{1 + x^2}}\right] = \log\left[\frac{x^2 + 1 + 2x}{x^2 + 1 - 2x}\right]$$

$$= \log\left[\frac{1 + x}{1 - x}\right]^2 = 2\log\left[\frac{1 + x}{1 - x}\right] = 2f(x)$$
84. Let $x, y \in N$ such that $f(x) = f(y)$
Then, $f(x) = f(y) \Rightarrow x^2 + x + 1 = y^2 + y + 1$
 $\Rightarrow (x - y) (x + y + 1) = 0$
 $\Rightarrow x = y$ or $x = (-y - 1) \notin N$
 \therefore f is one-one.
Again, since for each $y \in N$, there exist $x \in N$

... f is onto.

82

85.
$$|x|$$
 is not one-one; x^2 is not one-one;
 $x^2 + 1$ is not one-one. But $2x - 5$ is one-one
because $f(x) = f(y) \Rightarrow 2x - 5 = 2y - 5 \Rightarrow x = y$
Now, $f(x) = 2x - 5$ is bijective.
86. $-\sqrt{1+(-\sqrt{3})^2} \le (\sin x - \sqrt{3} \cos x) \le \sqrt{1+(-\sqrt{3})^2}$
 $\therefore -2 \le (\sin x - \sqrt{3} \cos x) \le 2$
 $\therefore -2 + 1 \le (\sin x - \sqrt{3} \cos x + 1) \le 2 + 1$
 $\therefore -1 \le (\sin x - \sqrt{3} \cos x + 1) \le 2 + 1$
 $\therefore -1 \le (\sin x - \sqrt{3} \cos x + 1) \le 2 + 1$
 $\therefore -1 \le (\sin x - \sqrt{3} \cos x + 1) \le 3$
i.e., range $= [-1, 3]$.
88. $f(x) = \log[\log x], f(x)$ is defined if $|\log x| > 0$
and $x > 0$ i.e., if $x > 0$ and $x \neq 1$
 $(\because |\log x| > 0 \text{ if } x \neq 1)$
 $\Rightarrow x \in (0, 1) \cup (1, \infty)$.
93. $e^{f(x)} = \sqrt{\log \frac{1}{|\sin x|}}$
 $\Rightarrow \sin x \neq 0 \Rightarrow x \neq n\pi + (-1)^{30}$
 $\Rightarrow x \neq n\pi$. Domain of $f(x) = R - \{n\pi, n \in I\}$.
94. $f(-x) = \sin \log \left[\frac{1}{(x + \sqrt{1 + x^2})} \right]$
 $\Rightarrow f(-x) = \sin \log \left[\frac{1}{(x + \sqrt{1 + x^2})} \right]$
 $\Rightarrow f(-x) = \sin \log \left[\frac{1}{(x + \sqrt{1 + x^2})} \right]$
 $\Rightarrow f(-x) = \sin \log \left[\frac{1}{(x + \sqrt{1 + x^2})} \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2}) \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2} \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2} \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2} \right]$
 $\Rightarrow f(-x) = -\sin \left[\log(x + \sqrt{1 + x^2} \right]$
 $\Rightarrow f(-x) = -\sin \left[$

2. Let
$$y = f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$$

 $y - 2 = \frac{e^{2x} - 1}{e^{2x} + 1}$
 $\Rightarrow (y - 2) e^{2x} + y - 2 = e^{2x} - 1$
 $\Rightarrow e^{2x} = \frac{1 - y}{y - 3} = \frac{y - 1}{3 - y}$
 $\Rightarrow 2x = \log_e \left(\frac{y - 1}{3 - y}\right) \Rightarrow x = \frac{1}{2} \log_e \left(\frac{y - 1}{3 - y}\right)$
 $\Rightarrow f^{-1}(y) = \frac{1}{2} \log_e \left(\frac{y - 1}{3 - y}\right)^{\frac{1}{2}}$
3. $e^{f(x)} = \frac{10 + x}{10 - x}, x \in (-10, 10)$
 $\Rightarrow f(x) = \log \left(\frac{10 + x}{10 - x}\right)$
 $\Rightarrow f\left(\frac{200x}{100 + x^2}\right) = \log \left[\frac{10 + \frac{200x}{100 + x^2}}{10 - \frac{200x}{100 + x^2}}\right]$
 $= \log \left[\frac{10(10 + x)}{10(10 - x)}\right]^2$
 $= 2\log \left(\frac{10 + x}{10 - x}\right) = 2f(x)$
 $f(x) = \frac{1}{2}f\left(\frac{200x}{100 + x^2}\right)$
 $\Rightarrow k = \frac{1}{2} = 0.5$

94. Since,
$$f(x)$$
 is even.

$$\therefore \quad f(-x) = f(x)$$

$$\therefore \quad \frac{a^{-x} - 1}{(-x)^n (a^{-x} + 1)} = \frac{a^x - 1}{x^n (a^x + 1)}$$

$$\Rightarrow \frac{1 - a^x}{(-1)^n x^n (1 + a^x)} = \frac{a^x - 1}{x^n (a^x + 1)}$$

$$\Rightarrow \frac{-1}{(-1)^n} = 1 \Rightarrow -1 = (-1)^n$$

$$n = -\frac{1}{3}$$
 can satisfy the equation.

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

95. Given expression =
$$\sum_{i=0}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$$

= $\sum_{i=0}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{99} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $0 + \sum_{i=35}^{\infty} \left[\frac{2}{3} + \frac{i}{2} \right]$
= $\frac{2}{3} + \frac{1}{2} \left[\cos 2x - 2 \sin \left(\frac{\pi}{2} + 2x \right) \right]$
= $\frac{3}{4} + \frac{1}{2} \left[\cos 2x - 2 \sin \left(\frac{\pi}{2} + 2x \right) \right]$
= $\frac{3}{4} + \frac{1}{2} \left[\cos 2x - 2 \sin \left(\frac{\pi}{2} + 2x \right) \right]$
= $\frac{1}{2}$
101. $(gof)(i) + (fog)(\pi) = g(f(i)) + f(g(\pi))$
= $(hof)(\sqrt{x^2 + 1})$
= $h(f(\sqrt{x^2 + 1}))$
= $h(f(\sqrt{x^2 + 1})$
= $h(x^2 + 1 - 1)$
=

103.
$$g(f(x)) = g([x]) = [[x]]$$

and $f(g(x)) = f([x]) = [[x]]$
When $x \ge 0$, $[[x]] = [x] = [[x]]$
 $\Rightarrow f(g(x)) = g(f(x))$
When $x < 0$, $[x] \le x < 0$
 $\Rightarrow [[x]] \ge [x]$
 $\Rightarrow [[x]] \ge [x]$
 $\therefore [[x]] \ge [x] \ge [[x]]$
....[$\because [t] \le t$ for all $t]$
 $\Rightarrow f(g(x)) \ge g(f(x))$
 $\therefore g(f(x)) \le f(g(x))$ for all $x \in \mathbb{R}$
104. Given, $f(x) = a x + b$, $g(x) = cx + d$
and $f(g(x)) = g(f(x))$
 $\Rightarrow f(c x + d) = g(a x + b)$
 $\Rightarrow a(c x + d) + b = c(a x + b) + d$
 $\Rightarrow ad + b = cb + d$
 $\Rightarrow f(d) = g(b)$
105. Given,
 $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos \left(x + \frac{\pi}{3}\right) \cos x$
 $= \frac{1}{2} \left\{1 - \cos 2x + 1 - \cos \left(2x + \frac{2\pi}{3}\right) + \cos \frac{\pi}{3}\right\}$
 $= \frac{1}{2} \left[\frac{5}{2} - \left\{\cos 2x + \cos \left(2x + \frac{2\pi}{3}\right)\right\} + \cos \left(2x + \frac{\pi}{3}\right)\right]$
 $= \frac{1}{2} \left[\frac{5}{2} - 2\cos \left(2x + \frac{\pi}{3}\right)\cos \frac{\pi}{3} + \cos \left(2x + \frac{\pi}{3}\right)\right]$
 $= \frac{5}{4}$
 $\therefore gof(x) = g[f(x)] = g\left(\frac{5}{4}\right)$
 $= 1$ $\left[\because g\left(\frac{5}{4}\right) = 1\right]$
Hence, $cg(x)$ is a constant formation.

Hence, gof(x) is a constant function.

106. Let $x, y \in \mathbb{R}$ be such that f(x) = f(y) $\Rightarrow x^3 + 5x + 1 = y^3 + 5y + 1$ $\Rightarrow (x^3 - y^3) + 5(x - y) = 0$ $\Rightarrow (x - y) (x^2 + xy + y^2 + 5) = 0$ $\Rightarrow (x - y) \left[\left(x + \frac{y}{2} \right)^2 + \frac{3y^2}{4} + 5 \right] = 0$

$$\Rightarrow x = y \text{ and } \left(x + \frac{y}{2}\right)^2 + \frac{3y^2}{4} + 5 \neq 0$$

... $f: R \rightarrow R$ is one-one Let y be an arbitrary element in R (co-domain). Then, f(x) = y i.e., $x^3 + 5x + 1 = y$ has at least one real root, say β in R $\beta^3 + 5\beta + 1 = y$... $\Rightarrow f(\beta) = v$ Thus, for each $y \in \mathbb{R}$ there exists $\beta \in \mathbb{R}$ such that $f(\beta) = y$ $f: R \rightarrow R$ is onto ... Hence, f: $R \rightarrow R$ is one-one onto. 107. As $x - [x] \in [0, 1), \forall x \in \mathbb{R}$ $0 \leq x - [x] \leq 1, \forall x \in \mathbb{R}$... \Rightarrow 1 \leq 1 + x -[x] \leq 2, $\forall x \in \mathbb{R}$ $\Rightarrow 1 \leq g(x) \leq 2, \forall x \in \mathbb{R}$ Hence, $f(g(x)) = 1 \forall x \in R$ 108. Here, (f - g)(x) = f(x) - g(x) $(\mathbf{f} - \mathbf{g})(x) = \begin{cases} x - 0 = x, & \text{if } x \text{ is rational} \\ 0 - x = -x, & \text{if } x \text{ is irrational} \end{cases}$ Let $\mathbf{k} = \mathbf{f} - \mathbf{g}$ Let x, y be any two distinct real numbers. Then, $x \neq y$ $\Rightarrow -x \neq -v$ Now, $x \neq y$ \Rightarrow k(x) \neq k(y) \Rightarrow (f - g) (x) \neq (f - g) (y) \Rightarrow f - g is one-one. Let y be any real number If y is a rational number, then k(y) = y \Rightarrow (f - g) (y) = y If y is an irrational number, then k(-y) = y \Rightarrow (f - g) (- y) = y Thus, every $y \in \mathbb{R}$ (co-domain) has its preimage in R (domain) $f - g : R \rightarrow R$ is onto. ... Hence, f - g is one-one and onto. 1

109. (fog) (x) = f(g(x)) = f\left(\frac{x-1}{2}\right)
=
$$2\left(\frac{x-1}{2}\right) + 1 = x$$

 \Rightarrow (fog) (x) = x \Rightarrow x = (fog)⁻¹(x)
Hence, (fog)⁻¹ $\left(\frac{1}{x}\right) = \frac{1}{x}$

45

110. Here,
$$f(2) = \frac{2+1}{2-1} = 3$$

∴ $f(f(2)) = f(3) = \frac{3+1}{3-1} = \frac{4}{2} = 2$
∴ $f(f(f(2))) = f(2) = \frac{2+1}{2-1} = 3$
111. Given, $f(x) = \sin x$
∴ $f: R \to R$ is neither one-one nor onto as
 $R_{f} = [-1, 1]$.
 $f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$
is both one-one and onto.
 $f: [0, \pi] \to [-1, 1]$
is neither one-one nor onto as
 $R_{f} = [0, 1]$.
 $f: \left[0, \frac{\pi}{2} \right] \to [-1, 1]$ is one-one but not onto as
 $R_{f} = [0, 1]$.
112. $f(x) = \sqrt{x} \Rightarrow \frac{f(25)}{f(16) + f(1)} = \frac{\sqrt{25}}{\sqrt{16} + \sqrt{1}} = \frac{5}{5} = 1$
113. $(gof)(x) = \sin x^{2} \Rightarrow (gogof)(x) = \sin(\sin x^{2})$
 $\Rightarrow (fogogof)(x) = (\sin(\sin x^{2}))^{2} = \sin^{2}(\sin x^{2})$
Now, $\sin^{2}(\sin x^{2}) = \sin(\sin x^{2})$
 $\Rightarrow \sin(\sin x^{2}) = 0, 1$
 $\Rightarrow \sin x^{2} = 0 \Rightarrow x^{2} = n\pi$
 $\Rightarrow x = \pm \sqrt{n\pi} \ n \in W$
114. $-1 \le \log_{2}(x^{2} + 5x + 8) \le 1$
 $\Rightarrow \frac{1}{2} \le (x^{2} + 5x + 8) \le 1$
 $\Rightarrow \frac{1}{2} \le (x^{2} + 5x + 8) \le 2$
 $\Rightarrow x^{2} + 5x + \frac{15}{2} \ge 0$
 $\Rightarrow x^{2} + 2\left(\frac{5}{2}\right)x + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + \frac{15}{2} \ge 0$
 $\Rightarrow (x + 3)(x + 2) \le 0 \Rightarrow x \in [-3, -2]$
115. $f(x) = |x|$
 $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$
Therefore, the function $f^{-1}(x)$ does not exist.

116. Let
$$y = \log_e \sqrt{4 - x^2} \Rightarrow e^y = \sqrt{4 - x^2}$$

 $\Rightarrow e^{2y} = 4 - x^2 \Rightarrow x^2 = 4 - e^{2y} \Rightarrow x = \sqrt{4 - e^{2y}}$
 $\therefore 4 - e^{2y} \ge 0$
 $\Rightarrow e^{2y} \le 4 \Rightarrow 2y \le \log_e 4$
 $\Rightarrow y \le \frac{1}{2} \log_e 4 \Rightarrow y \le \log_e 2$
 $\therefore y \in (-\infty, \log_e 2]$
117. $f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$
 $f(x)$ is real valued function when $\frac{\pi^2}{9} - x^2 \ge 0$
 $\Rightarrow x^2 \le \frac{\pi^2}{9} \Rightarrow x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] = \text{Domain of } f(x)$
When domain is in closed interval, we use differentiation method.
 $f'(x) = \sec^2 \sqrt{\frac{\pi^2}{9} - x^2} \cdot \frac{1}{2\sqrt{\frac{\pi^2}{9} - x^2}} (-2x)$
When $f'(x) = 0, x = 0$
G Finding values of $f(x)$ when $x = 0, -\frac{\pi}{3}, \frac{\pi}{3}$
[End points of domain]
 \therefore $f(0) = \tan \sqrt{\frac{\pi^2}{9}} = \sqrt{3}$ and $f\left(-\frac{\pi}{3}\right) = f\left(\frac{\pi}{3}\right) = 0$
 \therefore Range of function = $\left[0,\sqrt{3}\right]$
[Taking least value and greatest value for range]
118. $\cos 2x + 7 = a(2 - \sin x) \Rightarrow a = \frac{\cos 2x + 7}{2 - \sin x}$
 $\Rightarrow a = \frac{1 - 2\sin^2 x + 7}{2 - \sin x} = \frac{2(4 - \sin^2 x)}{2 - \sin x}$
 $\Rightarrow a = 2(2 + \sin x)$
 $\therefore a \in [2, 6]$ $[\because -1 \le \sin x \le 1]$
119. Let $y = \log_e(3x^2 + 4)$
 $\Rightarrow 3x^2 + 4 = e^y \Rightarrow x^2 = \frac{e^y - 4}{3}$
Since, $x^2 \ge 0$
 $\therefore \frac{e^y - 4}{3} \ge 0 \Rightarrow e^y - 4 \ge 0 \Rightarrow y \ge \log_e 4$
 $\Rightarrow y \ge 2 \log_e 2$
So, range = $[2 \log_e 2, \infty)$
120. $f(x) = \sin x + \cos x, g(x) = x^2$

- 121. Number of bijective function from a set of 10 elements to itself is ${}^{10}P_{10}$. So, required number = 10!
- 122. Function given by f(x) = ax + b $f^{-1}(x) = \frac{x-b}{a}$ So, g(y) = y - 3
- 123. f(g(-1)) = f(-3 4) = f(-7) = 5 49 = -44
- 124. f(x) = f(y) $\Rightarrow x + 2 = y + 2 \Rightarrow x = y$
 - Function f is one-one

...

125.
$$f(-x) = \sec\left[\log\left(-x + \sqrt{1 + (-x)^2}\right)\right]$$
$$= \sec\left[\log\left(-x + \sqrt{1 + x^2}\right)\right]$$
$$= \sec\left[\log\left(\sqrt{1 + x^2} - x\right)\right]$$
$$= \sec\left[\log\left(\frac{1 + x^2 - x^2}{\sqrt{1 + x^2} + x}\right)\right]$$
$$= \sec\left[\log\left(\frac{1 + x^2 - x^2}{\sqrt{1 + x^2} + x}\right)\right]$$
$$= \sec\left[\log\left(\frac{1}{\sqrt{1 + x^2} + x}\right)\right]$$
$$= \sec\left[\log\left(\sqrt{1 + x^2} + x\right)\right]$$
$$= \sec\left[\log\left(\sqrt{1 + x^2} + x\right)\right]$$
$$= \sec\left[\log\left(\sqrt{1 + x^2} + x\right)\right]$$

126.
$$f(x) = \sqrt{\cos^{-1}\left(\frac{1-|x|}{2}\right)}$$

$$\therefore -1 \le \frac{1-|x|}{2} \le 1$$

$$\Rightarrow -2 - 1 \le -|x| \le 2 - 1$$

$$\Rightarrow -3 \le |x| \le 1$$

$$\Rightarrow -1 \le |x| \le 3$$

$$\Rightarrow x \in [-3, 3]$$

127. $f = \{(1, 1), (2, 4), (0, -2), (-1, -5)\}$ be a linear function from Z to Z. The function satisfies the above points, if f(x) = 3x - 2

128. We have,
$$\mathbf{f}(\mathbf{x}) = \frac{5x}{4x+5}, x \in \mathbb{R} - \left\{\frac{5}{4}\right\}$$

Let $\mathbf{f}(\mathbf{x}) = y$
 $\Rightarrow \mathbf{x} = \mathbf{f}^{-1}(\mathbf{y})$
 $y = \frac{5x}{4x+5}$

$$\Rightarrow 4xy + 5y = 5x$$

$$\Rightarrow 5y = 5x - 4xy = x(5 - 4y)$$

$$\Rightarrow x = \frac{5y}{5 - 4y}$$

$$g(y) = f^{-1}(y) = \frac{5y}{5 - 4y}, x \in \mathbb{R} - \left\{\frac{5}{4}\right\}$$

129. Since, f(x) and g(x) has same domain and co-domain A and B and $f(1) = (1)^2 - 1 = 0$

- $g(1) = 2\left|1 \frac{1}{2}\right| 1 = 2 \times \frac{1}{2} 1 = 0$ f(1) = 0 = g(1), f(0) = 0 = g(0) f(-1) = 2 = g(-1), f(2) = 2 = g(2) A = {-1, 0, 1, 2}, B = {-4, -2, 0, 2}
- \therefore By definition, the two function are equal f = g

130. $f(x) = \frac{x-1}{x+1}$ $\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$ $\Rightarrow x = \frac{f(x)+1}{1-f(x)}$ $f(2x) = \frac{2x-1}{2x+1} = \frac{2\left[\frac{f(x)+1}{1-f(x)}\right]^{-1}}{2\left[\frac{f(x)+1}{1-f(x)}\right]^{+1}} = \frac{3f(x)+1}{f(x)+3}$ 131. $f: N \rightarrow N$ $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ Now for n = 1, $f(1) = \frac{1+1}{2} = 1$ and if n = 2, $f(2) = \frac{2}{2} = 1$ f(1) = f(2), But $1 \neq 2$. f(x) is not one-one. $f(x) = \frac{n+1}{2}$ if n is odd if $y = \frac{n+1}{2}$ then $n = 2y - 1, \forall y$ Also, $f(x) = \frac{n}{2}$ if n is even i.e., $y = \frac{n}{2}$ or $n = 2y \forall y$

f(x) is onto.