15

Sequence and Series

<u>Formulae</u>

1. Arithmetic Progression (A.P.)

- i. A sequence (t_n) is said to be arthmetic progression (A.P.) if t_{n+1} i– $t_n = d$ (common difference) for all $n \in N$.
- ii. If a is the first term and d is the common difference, then A.P. can be written as
 - $a + (a + d) + (a + 2d) + \dots$

iii.
$$t_n = S_n - S_{n-1}$$

- 2. General term of an A.P.
 - i. General term (nth term) of an A.P. is $t_n = a + (n - 1) d$
 - We can denote it by T_n also.
 - ii. If the last term of an A.P. is *l*, then l = a + (n - 1) d
- 3. Sum of n terras of an A.P.

$$S_n = \frac{n}{2} [2a + (n-1)d] \text{ or } S_n = \frac{n}{2} (a+l) \text{ or }$$

 $S_n = \frac{n}{2}(a + t_n)$

- 4. Arithmetic mean (A.M.)
 - i. If A is the A.M. between two numbers a

and b, then
$$A = \frac{a+b}{2} \Longrightarrow 2A = a+b$$

ii. Sum of n Arithmetic means between two numbers a and b

If A , A , ..., A , are n A.M.'s between a and b, then

$$A_1 + A_2 + \dots + A_n = nA$$

where $A_n = a + nd$

$$=a+n\left(rac{b-a}{n+1}
ight)=rac{a+nb}{n+1}$$

and
$$d = \frac{b-a}{n+1}$$

- 5. Selection of terms in an A.P.
 - i. When the sum is given, the following way is adopted in selecting certain number of terms:

MATHEMATICS - XI OBJECTIVE

Number of terms	Terms to be taken
3	a - d, a, a + d
4	a - 3d, a - d, a + d, a + 3d
5	a - 2d, a - d, a, a + d, a + 2d

ii. When the sum is not given, then the following way is adopted in selection of terms.

Number of terms	Terms to be taken			
3	a, a+d, a+2d			
4	a, a + d, a + 2d, a + 3d			
5	a, $a + d$, $a + 2d$, $a + 3d$, $a + 4d$			

6. Geometric Progression (G.P.)

i. A sequence (t_n) is said to be geometric

progression if
$$\frac{t_{n+1}}{t_n} = r$$
 (common ratio) for

all $n \in N$.

ii. If a is the first term and r is the common ratio, then G.P. can be written as $a + ar + ar^2 + \dots$

7. General term of a G.P.

General term (nth term) of an G.P. is

 $t_n = ar^{n-1}$ or $Tn = ar^{n-1}$

8. Sum of first n terms of a G.P. Sum of first n terms of an G.P. is

$$S_n = \frac{a(1-r^n)}{1-r} \text{ or } S_n = \frac{a-t_n r}{1-r} (r < 1)$$

$$S_n = \frac{a(r^n - 1)}{1 - r} \text{ or } S_n = \frac{t_n r - a}{r - 1} (r > 1)$$

 $S_n = na (r = 1)$

9. Sum of infinite terms of a G.P.

$$S_{\infty} = \frac{a}{1-r}$$
, if $|r| < 1$

If $|\mathbf{r}| \ge 1$, then S_{∞} does not exist.

Sequence and Series

- 10. Geometric mean (G.M.)
 - i. If G is the G.M. between two numbers a and b, then $G^2 = ab \Rightarrow G = \sqrt{ab}$
 - ii. Product of n Geometric means between a and b

If G_1 , G_2 ,..., G_n are n G.M.'s between a and b, then

$$G_1 \cdot G_2 \cdot \dots \cdot G_n = G^n$$

$$\Rightarrow \sqrt[n]{G_1 \cdot G_2 \cdot \dots \cdot G_n} = G$$

where
$$G_n = ar^n = a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

11. Selection of terms in a G.P.

i. When the product is given, the following way is adopted in selecting certain number of terms:

Number of term	Terms to be taken
3	$\frac{a}{r}$, a, ar
4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^2$
5	$\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$

ii. When the product is not given, then the following way is adopted in selection of terms

Number of term	Terms to be taken
3	a, ar, ar ²
4	a, ar, ar^2 , ar^3
5	a, ar, ar^2 , ar^3 , ar^4

12. Harmonic Progression (H.P.)

A progression is called a harmonic progression (H.P.) if the reciprocals of its terms are in A.P.

13. General term of a H.P.

$$\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots$$
 is $t_0 = \frac{1}{a+(n-1)d}$ or

$$t_n = \frac{1}{t_n \text{ of A.P.}}$$

MATHEMATICS - XI OBJECTIVE

- **14.** Sum of H.P. does not exist.
 - **15. Harmonic mean (H.M.)** If H is the H.M. between two numbers a and b,

then $H = \frac{2ab}{a+b}$

16. Relation between A.M. G.M. and H.M.

If A, G, H are the A.M., G.M. and H.M. of two numbers a and b, then

- a. $A \ge G \ge H$
- b. $G^2 = AH$
- c. A, G, H are in G.P.
- 17. Arithmetico-geometric progression (A.G.P.) i. General term of an A.G.P.
 - a, (a + d)r, $(a + 2d)r^2$,.... is $t_n = [a + (n - 1)d] r^{n-1}$
 - ii. Sum of an A.G.P.
 - Sum of n terms of an A.G-P.
 - $a_{,}(a+d)r, (a+2d)r^{2},....$ is

$$= \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}$$

iii. Sum of infinite terms of an A.G.P. is

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} (|r| < 1)$$

18. Special Series:

i

Sum of first n natural numbers

$$=\sum_{r=1}^{n}r=\frac{n(n+1)}{2}$$

ii. Sum of squares of first n natural numbers

$$=\sum_{r=1}^{n} r^{2} = \frac{n(n+1)(2n+1)}{6}$$

iii. Sum of cubes of first n natural number

$$=\sum_{r=1}^{n}r^{3}=\frac{n^{2}(n+1)^{2}}{4}$$

19. Exponential Series:

=

i.
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

ii. $e^{-x} = 1 - \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$

\bigcirc		Sequence	and S	Series
	iii.	$e^{1} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{4!}$	6.	If for a G.
		$e^{-1} = 1 - \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} \dots$		then $t_n =$
		1. 2. 3. 1.	7.	If for a G.P
	V.	$e^{x} + e^{-x} = 2\left(1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots\right)$		then $t_m = -$
	vi.	$\frac{\mathbf{e} + \mathbf{e}^{-1}}{2} = 1 + \frac{1}{2!} + \frac{1}{4!} + \dots$	8.	If a, b, c an $a^{q-r}.b^{r-p}.c^{p}$
	vii.	$\frac{e - e^{-1}}{2} = 1 + \frac{1}{3!} + \frac{1}{5!} + \dots$	9.	If a, b, $c \in$ are in G.P.
	viii.	$e^{e^x} = 1 + \frac{e^x}{1!} + \frac{e^{2x}}{2!} + \frac{e^{3x}}{3!} + \dots$	10.	If the m th t then
	ix.	If $a > 0$ then		$t_{m+n} = \frac{mn}{m+n}$
		$a^{x} = 1 + x(\log_{e} a) + \frac{x^{2}}{2!} (\log_{e} a)^{2}$	11. 12.	In a H.P., t If H is H.M
		x ³	12.	i. (H – 1
		$+\frac{x^{3}}{3!}(\log_{e}a)^{3}+$	7	ii.7 1
20.	Log	arithmic series	D	$\frac{1}{H-a}$
	If x	< 1, then	1	iii. $H + a$
	i.	$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	13.	H-a If A_1 , A_2 b
	ii.	$-\log(1-x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$		and H_1 , H numbers a
	iii.	$\log\left(\frac{1+x}{1-x}\right) = 2\left[x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right]$	14.	If A, G, H b then
	iv.	$\log_e 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$		$\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$
		<u>Shortcuts</u>		
1.	-	^h term of an A.P. is q and q th term = p, then q = 0, tn = $p + q - n$	15.	If A & G numbers a,
2	If T	$T = \frac{1}{2}$ and $T = \frac{1}{2}$ then $T = 1$		$A \pm \sqrt{(A + A)^2}$
∠.	11 1	$T_p = \frac{1}{q}$ and $T_q = \frac{1}{p}$, then $T_{pq} = 1$	16.	
3. 4		$t_p = q t_q$ of an A.P., then $t_{p+q} = 0$		b $(a > b)$ between th

4. If $S_p = q$ for an A.P., $S_q = p$, then $\mathbf{S}_{\mathbf{p}+\mathbf{q}} = -(\mathbf{p}+\mathbf{q})$ 5. If $S_p^{T} = S_q$ for an A.P., then $S_{p+q} = 0$

MATHEMATICS - XI OBJECTIVE

6. If for a G. P.,
$$t_p = P$$
; $t_q = Q$,
then $t_n = \left[\frac{P^{n-q}}{Q^{n-q}}\right]^{\frac{1}{p-q}}$
7. If for a G.P., $t_{m+n} = p$; $t_{m-n} = q$,
then $t_m = \sqrt{pq}$; $t_n = p\left(\frac{q}{p}\right)^{\frac{m}{2n}}$
8. If a, b, c are the pth, qth, rth terms of a G.P., then
 $a^{q-r} \cdot b^{r-p} \cdot c^{p-q} = 1$
9. If a, b, c \in A.P., then 2^{ax+1} , 2^{bx+1} , 2^{cx+1} , $x \neq 0$
are in G.P.
10. If the mth term of a H.P. = n and nth term = m,
then
 $t_{m+n} = \frac{mn}{m+n}$, $t_{mn} = 1$, $t_p = \frac{mn}{p}$
11. In a H.P., $t_p - qr$, $t_q = pr$, then $t_r = pq$
12. If H is H.M. between a and b, then
i. $(H - 2a) (H - 2b) = H^2$
ii. $\frac{1}{H-a} + \frac{1}{H-b} = \frac{1}{a} + \frac{1}{b}$
iii. $\frac{H+a}{H-a} + \frac{H+b}{H-b} = 2$
13. If A A be two A M is G. G. be two GM is

e two A.M.'s, $G_1 G_2$ be two G.M.'s H, be two H.M.'s between two 0.0

umbers a and b, then
$$\frac{G_1G_2}{H_1H_2} = \frac{A_1 + A_2}{H_1 + H_2}$$

be A.M., G.M., H.M. between a and b,

$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \begin{cases} A \text{ when } n = 0 \\ G \text{ when } n = -\frac{1}{2} \\ H \text{ when } n = -1 \end{cases}$$

be the A.M. and G.M. between two , b, then a, b are given by

+G(A-G)

I. between two positive numbers a and > 0) is n times the geometric mean between them, then

$$\frac{a}{b} = \frac{n + \sqrt{n^2 - 1}}{n - \sqrt{n^2 - 1}}, \ n > 1$$

227

Sequence and Series

17. Sum of n arithmetic means between a and b is

$$n\!\left(\frac{a+b}{2}\right)$$

- 18. Product of n geometric means between a and b is $(\sqrt{ab})^n$
- 19. nth Harmonic means between two numbers a and

b is
$$\frac{(n+1)ab}{na+b}$$

20. a^2 , b^2 , c^2 are in A.P.

$$\Leftrightarrow \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$$
 are in A.P.

21. If $a_1 a_2, \dots, a_n$ are the non-zero terms of a non-constant A.P., then

$$\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \frac{1}{a_3a_4} \dots + \frac{1}{a_{n-1}a_n} = \frac{n-1}{a_1a_n}$$

22. If S_n is the sum of first n terms of the A.P. $a + (a + d) + (a + 2d) + \dots + l$, then

i.
$$S_n = \frac{l-a+d}{2d} (a+l)$$

ii. $S_n = \frac{n}{2} [2l - (n-1) d]$

23. 2+6+12+20 n terms

$$=\frac{n(n+1)(n+2)}{2}$$

24. $1 + 3 + 7 + 13 \dots n$ terms

$$=\frac{n(n^2 2)}{3}$$

25. 1 + 5 + 14 + 30.... upto n terms

$$=\frac{n(n+1)^2(n+2)}{12}$$

26. Sum of first n odd natural numbers

$$= 1 + 3 + 5 + \dots + (2n - 1) = \sum_{r=1}^{n} (2r - 1) = n^{2}$$

27. Sum of first n even natural numbers

$$= 2 + 4 + 6 + \dots + 2n = \sum_{r=1}^{n} 2r = n(n+1)$$

28. If $a_1, a_2, a_3, \dots, a_n$ are in A.P., then

i.
$$\frac{1}{\sqrt{a_{1}} + \sqrt{a_{2}}} + \frac{1}{\sqrt{a_{2}} + \sqrt{a_{3}}} + \dots + \frac{1}{\sqrt{a_{n,1}} + \sqrt{a_{n}}} + \frac{1}{\sqrt{a_{n,1}} + \sqrt{a_{n}}}$$
ii.
$$\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} + \dots + \frac{1}{a_{n}a_{n+1}}$$

$$= \frac{1}{(a_{2} - a_{1})} \left[\frac{1}{a_{1}} - \frac{1}{a_{n+1}} \right]$$
iii.
$$\frac{1}{a_{1}a_{2}a_{3}} + \frac{1}{a_{2}a_{3}a_{4}} + \frac{1}{a_{3}a_{4}a_{5}} + \dots + \frac{1}{a_{n}a_{n+1}a_{n+2}}$$

$$= \frac{1}{2(a_{2} - a_{1})} \left[\frac{1}{a_{1}a_{2}} - \frac{1}{a_{n+1}a_{n+2}} \right]$$
29.
$$1 + 2x + 3x^{2} + 4x^{3} + \dots + 10\infty$$

$$D = \frac{1}{(1 - x)^{2}} \text{ for } |x| < 1$$
30.
$$1 + 3x + 5x^{2} + 7x^{3} + \dots + 10\infty$$

$$= \frac{1 + x}{(1 - x)^{2}} \text{ for } |x| < 1$$
31. Short cut methods for recurring decimals:
i.
$$.62\dot{5} = \frac{625 - 6}{990} = \frac{619}{990}$$
ii.
$$.42\dot{3} = \frac{423 - 4}{990} = \frac{419}{990}$$
iii.
$$1.2\dot{4}\dot{5} = 1 + \frac{245 - 2}{990} = 1 + \frac{243}{990} = \frac{1233}{990}$$

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

\bigcirc	Sequence and Series 229				
		MULTIPLE CHO	ICE	QUESTIONS	
	Classical	Thinking	11.	The sum of first n od	d natural numbers is
	15 1 A			a) n ²	b) 2n
	Arithmet	ogression (A.P.) and c Mean (A.M.)		c) $\frac{n(n-1)}{2}$	d) $\frac{n(n+1)}{2}$
1.		2, 70, 68, 66, is 40 ?	12	Sum of first 5 terms	of an A.P. is one fourth of
	a) 16	b) 17	12.		terms. If the first term $= 2$,
•	c) 18	d) 20			ference of the A.P. is
2.	The 10 th term of the			a) 6	b) – 6
	$\sqrt{3}, \sqrt{12}, \sqrt{27}, \dots$ is			c) 3	d) 2
	a) $\sqrt{243}$	b) $\sqrt{300}$	13.	If 1 + 6 + 11 + 16 + to	$\dots + x = 148$, then x is equal
	c) $\sqrt{363}$	d) $\sqrt{432}$		a) 24	b) 36
3.	How many terms are	e there in sequence		c) 42	d) 46
	3, 6, 9, 12,, 111 ?		14.		terms of an A.P. be $3n^2 - n$
	a) 30	b) 37			rence is 6, then its first term
	c) 40	d) 47	-		h) 2
4.	If a, b, c, d, e, fare in	A.P., then $e - c =$		a) 2	b) 3
	a) $2(c - a)$		15	c) 1 pt ^h term of the series	d) 4
	c) $2(d-c)$	d) d – c	D.	proterin of the series)
5.	If a, b, c are in A.P.,	then $\frac{a}{bc}, \frac{1}{c}, \frac{1}{b}$ are in		$\left(3-\frac{1}{n}\right)+\left(3-\frac{2}{n}\right)+\left(3-\frac{2}{n}\right)$	$\left(3-\frac{3}{n}\right)+\dots$ will be
	a) A.P.	b) G.P.	_		(\mathbf{n})
	c) H.P.	d) none of these		a) $\left(3+\frac{p}{p}\right)$	b) $\left(3-\frac{p}{n}\right)$
6.	If for a sequence (t_n)	$S_n = 3(4^n - 1)$, then $t_n = 3(4^n - 1)$			
	a) $3(4^{n-1})$	b) $9(4^{n-1})$		c) $\left(3+\frac{n}{p}\right)$	d) $\left(3-\frac{n}{p}\right)$
	c) $3(4^n)$	d) $9(4^{n-1})$	/	c) $\begin{pmatrix} 3+-\\ p \end{pmatrix}$	d) $\begin{pmatrix} 3\\ p \end{pmatrix}$
7.	15 th term of an A.P. 2		16.	If the 9 th term of an	A.P. be zero, then the ratio
	a) – 25	b) – 29		of its 29th and 19th ter	
	c) – 49	d) - 39		a) 1:2	b) 2:1
8.	If for an A.P, $S_{16} = 7$			c) 1:3	d) 3:1
	a) 5	b) 6	17.	If the p th , q th and a	r th term of an arithmetic
0	c) 7	d) 8		-	nd c respectively, then the
9.	terms is	40. Then the sum of first 13		value of $[a(q - r) + b]$	
	a) 520	b) 53		a) 1	b) -1
	c) 2080	d) 1040	10	c) 0	d) 1
10.	<i>.</i>	n A.P. is 4. Then the sum of	18.	and the sum of all	n A.P. is 10, last term is 50 the terms is 300, then the
	a) 4	b) 28		number of terms are $2 \sum_{i=1}^{n} 5_{i}$	h) የ
	c) 16	d) 40		a) 5	b) 8
	-, 10			c) 10	d) 15

	Sequence	e and S	eries 230
9.	The solution of the equation		$5(2^n - 1)$ $3(3^n + 1)$
	(x + 1)+(x + 4)+(x + 7) + + (x + 28) = 155 is		a) $\frac{5(2^n-1)}{3}$ b) $\frac{3(3^n+1)}{2}$
	a) 1 b) 2		5 –
	c) 3 d) 4		c) $\frac{5(3^n-1)}{2}$ d) $\frac{5(2^n+1)}{3}$
0.	The number of terms of the A.P. 3,7,1 1,15to be		2 3
	taken so that the sum is 406, is	27.	For a G.P. 4, -4 , 4, -4 ,, $t_n =$
	a) 5 b) 10		a) $4(-1)^{n-1}$ b) $4(-1)^n$
	c) 12 d) 14		c) $2(-1)^{n-1}$ d) $2(-1)^n$
	, , , , , , , , , , , , , , , , , , , ,	28.	How many terms of the G.P. 1, 3, 9, 27 have
1.	If A_1 , A_2 are two arithmetic means between $\frac{1}{3}$		to be taken to get the sum equal to 3280?
	1 ⁻² 3		a) 5 b) 8
	and $\frac{1}{2}$ then their values are		c) 7 d) 6
	and $\frac{1}{24}$, then their values are		-3 9 -27
	7 5 17 5	29.	For a G.P. 1, $\frac{-3}{2}$, $\frac{9}{4}$, $\frac{-27}{8}$,, $S_n =$
	a) $\frac{7}{72}, \frac{5}{36}$ b) $\frac{17}{72}, \frac{5}{36}$		2 1 0
	72 30 72 30		$(3)\begin{bmatrix} (-3)^n \end{bmatrix} (2)\begin{bmatrix} (3)^n \end{bmatrix}$
	c) $\frac{7}{36}, \frac{5}{72}$ d) $\frac{5}{72}, \frac{17}{72}$		a) $\left(\frac{3}{5}\right) \left 1 - \left(\frac{-3}{2}\right)^n \right $ b) $\left(\frac{2}{5}\right) \left 1 - \left(\frac{3}{2}\right)^n \right $
	a) 36, 72 a) 72, 72		
2.	If A be an arithmetic mean between two numbers	-	$(3) \begin{bmatrix} (3)^n \end{bmatrix} = (2) \begin{bmatrix} (-3)^n \end{bmatrix}$
	and S be the sum of n arithmetic means between	-	c) $\left(\frac{3}{5}\right) \left 1 - \left(\frac{3}{2}\right)^n \right $ d) $\left(\frac{2}{5}\right) \left[1 - \left(\frac{-3}{2}\right)^n \right]$
	the same numbers, then		
	a) $S = nA$ b) $A - nS$	30.	All the terms of a G.P. are squared. The new
	c) $A = S$ d) $A = n^2 S$	11	series thus formed is in
3.	Three numbers are in A.P. whose sum is 33 and		a) G.P. b) A.P.
	product is 792, then the smallest number from	21	c) H.P d) none of these
	these numbers is	31.	The n th term of a G.P, 1, 2, 4, 8, is
	a) 4 b) 8		a) $2n$ b) $2^n - 1$
	c) 11 d) 14		c) 2^{n-1} d) $1-2^n$
4.	Which term of the sequence	32.	The sum to n terms of $2 + 22 + 222 +$ is
	8 – 6i, 7 – 4i, 6 – 2i, is a real number ?	-	a) $\frac{1}{81}[10(10^n - 1) - 9n]$
	a) 7 th b) 6 th		a) $\frac{1}{81}$ [10(10 - 1) - 91]
	c) 5^{th} d) 4^{th}		2
	15.2 Geometric Progression (G.P.) and		b) $\frac{2}{81}[10(10^n - 1) - 9n]$
	<u>Geometric Mean (G.M.)</u>		01
	<u>.</u>		c) $\frac{2}{81}[10(10^n - 1)]$
5.	The n th term for a G.P. 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ is		81
•	2°4°8°16		. i
	$(1)^n$ $(1)^{n-1}$		d) $\frac{1}{81}[10(10^n - 1) - n]$
	a) $\left(\frac{1}{2}\right)^n$ b) $\left(\frac{1}{4}\right)^{n-1}$	33	The sum to n terms of $0.9 + 0.99 + 0.999$ is
	$(2) \qquad (4)$	55.	The sum to n terms of 0.7 + 0.77 + 0.777 IS
	$(1)^{n-1}$		a) $\frac{9n - [1 - (0.1)^n]}{9}$ b) $\frac{5n - [1 - (0.1)^n]}{9}$
	c) $\left(\frac{1}{2}\right)^{n-1}$ d) $\left(\frac{1}{4}\right)^n$		9 9 9
			$9n + [1 + (0 \ 1)^n]$ $6n - [1 - (0 \ 1)^n]$
6.	For a G.P. 5, 15, 45,135,, S _n =		c) $\frac{9n + [1 + (0.1)^n]}{9}$ d) $\frac{6n - [1 - (0.1)^n]}{9}$
		1	

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

\bigcirc		Sequence	and S	eries	231
34.	If the first term of a G 6, then r = a) $\frac{1}{3}$ c) $\frac{3}{2}$	P. is 2 and sum to infinity is b) $\frac{2}{3}$ d) $\frac{4}{3}$	42.		he two geometric means between imbers p and q, then g_1g_2 is equal b) pq d) $\frac{p}{q}$
35.	t _n for a G.P. 3, $\frac{-3}{2}$, $\frac{3}{4}$ a) $3\left(-\frac{1}{2}\right)^{n-1}$			term and comm a) -5 , 2 c) -5 , -2 The first term of	
36.	-	d) $3^{n} \left(\frac{1}{2}\right)^{n-1}$ it terms of G.P. is 82 times the common ratio of	45.	<i>,</i>	b) ± 5 d) ± 6 = 20, t ₇ = 320, then t ₁₀ = b) 2560 d) 2600
3 7.	a) 4 c) 3 For a G.P. 3, 12, 48, 1 a) $3\left[\frac{4^{n}-1}{5}\right]$		46.		a of a geometric progression is 4, then its 7 th term is b) 36 d) $\frac{9}{4}$
8.		d) $3^{n} - 1$ = 510, then t_{3} = b) 4		a) 125√10 c) 125	sequence $\sqrt{2}, \sqrt{10}, 5\sqrt{2}, \dots$ is b) $25\sqrt{2}$ d) $125\sqrt{2}$
	 the sum 30? a) 4 c) 5 If three numbers a, 8 	G.P. 2, 22, 23 needed to get b) 8 d) 6 , b, $(a \neq b)$ are in G.P and then the values of a and b		1 and 64 are a) 1 and 64 c) 2 and 16 If the product G.P. is 216 and	b) 4 and 16 d) 8 and 16 of three consecutive terms of the sum of product of pair-wise i
1.	respectively are a) -4, -16 c) 16, -4 Three numbers are in the extremes be each	 b) -4, 16 d) 16, 4 a G. P. whose sum is 70. If b multiplied by 4 and the b in A.P. Find the numbers. 	50.	 a) 1, 3, 9 b) 2, 6, 18 c) 3, 9, 27 d) 2, 4, 8 The sum of infi 	numbers will be nity of a geometric progression i
	 a) 10, 20, 40 of 40, 2 b) 5, 15, 45 or 45, 15 c) 8, 16, 32 or 32, 16 d) -1, -3, -6 or -6 	, 5 , 8		$\frac{4}{3}$ and the first a) 7/16 c) 1/9	term is $\frac{3}{4}$. The common ratio i b) 9/16 d) 7/9

MATHEMATICS - XI OBJECTIVE

		Sequence	e and Series 232
		<u>gression, Harmonic_Mean</u> en A.M., <u>G.M. and H.M.</u>	57. If A.M. of two terms is 9 and H.M. is 36, ther G.M. will be
51. For two positive numbers, if $A.M. = 25$ and			a) 18 b) 12
	G.M=12, then H.M. =		c) 16 d) 17
	a) 6.75	b) 5.86	<u>15.4 Arithmetico Geometric</u>
	c) 5.76	d) 6.85	<u>Progression (A.G.P.)</u>
52.		respectively the A.M., G.M. wo unequal positive quantities,	58. If $3 + 5r + 7r^2 + \dots$ to ∞ is $\frac{44}{9}$, then r is equal to
	a) $A < G < H$	b) $A < H < G$	a) $\frac{17}{11}$ b) $\frac{1}{4}$
	c) $G < H < A$	d) $H < G < A$	11 67 4
53.	The A.M. between H.M. is 8. Thus, C	a two numbers is 32 and their A.M. =	c) $\frac{11}{17}$ d) 4
	a) 16	b) 4	59. If $ \mathbf{x} < 1$, then $1 + 3\mathbf{x} + 5\mathbf{x}^2 + 7\mathbf{x}^3 + \dots$ upto ∞ is
	c) 256	d) 64	equal to
4 .	The arithmetic, ha	rmonic and geometric means	1 + x $2 + x$
	between two p	ositive numbers are $\frac{144}{15}$,	a) $\frac{1+x}{(1-x)^2}$ b) $\frac{2+x}{(1-x)^2}$
	15 and 12 but not	necessarily in this order, then	c) $\frac{x}{(1-x)^2}$ d) $\frac{1+x}{(1-x)}$
	the H.M., G.M and	d A.M. respectively are	$(1-x)^2$ $(1-x)$
	15	b) 12, 15, $\frac{144}{15}$ d) 12, $\frac{144}{15}$, 15	60. The sum to, infinity of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ is a) 2 b) 3
5	If A is the AM b	between two distinct positive	c) 4 d) 6
5.		the H.M. between them, then	15.5 Special series, Exponential series,
	the G.M. between		Logarithmic series
	a) 2A – H	b) $\frac{A^2}{H}$	61. $\sum_{r=1}^{n} (2r+5) =$
	\	d) $\sqrt{\frac{A}{H}}$	a) $n(5n+6)$ b) $2n(n+3)$
	c) \sqrt{AH}	d) \sqrt{H}	c) $n(n+3)$ d) $n(n+6)$
6.	If the 7 th term of a	H.P. is $\frac{1}{10}$ and the 12 th term is	62. The sum of the series $x^2 + \frac{x^4}{2} + \frac{x^6}{3} + \frac{x^8}{4} + \dots$
	2		x < 1, is
	$\frac{2}{25}$, then the 20th	term is	a) $(1 - x^2)^{-1}$ b) $\frac{x^2}{1 - x^2}$
	a) $\frac{1}{37}$	b) $\frac{1}{41}$	c) $-\log_{e}(1-x^{2})$ d) $\log(1+x^{2})$
	37		63. The sum of $1^3 + 2^3 + 3^3 + \dots + 25^3 =$
	1	1	a) 106525 b) 105525
	c) $\frac{1}{45}$	d) $\frac{1}{49}$	c) 104525 d) 105625

	Sequence	e and Series 233		
<u>6</u> 4.	The sum of $(31)^2 + (32)^2 + (33)^2 + \dots + (60)^2$ is	Critical Thinking		
	a) 64355 b) 64533			
	c) 64535 d) 64553	<u>15.1 Arithmetic Progression (A.P.) and</u> <u>Arithmetic Mean (A.M.)</u>		
65 .	$(2^2 - 1^2) + (4^2 - 3^2) + (6^2 - 5^2) + =$			
	a) $n(3n+l)$ b) $n^2(2n+l)$	1. Which term of the sequence $8 - 6i$, $7 - 4i$, $6 - 2i$ is purely imaginary?		
	c) $n^2(3n+1)$ d) $n(2n+1)$	a) 6th b) 8th		
56	$\log_{e} 3 - \frac{\log_{e} 9}{2^{2}} + \frac{\log_{e} 27}{3^{2}} - \frac{\log_{e} 81}{4^{2}} + \dots$ is	c) 9th d) 10th		
	$\log_e 3 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{3^2}$ IS	2. The fourth term of the sequence		
	a) $(\log_{e} 3) (\log_{e} 2)$ b) $\log_{e} 3$	2. The fourth term of the sequence		
		$\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}, \dots$ is		
	c) $\log_e 2$ d) $\frac{\log_e 5}{\log_2 3}$	$1 + \sqrt{x}$ $1 - x$ $1 - \sqrt{x}$		
	$\log_e 3$	1 1		
	x^{2} x^{3} x^{4}	a) $\frac{1}{1-2\sqrt{x}}$ b) $\frac{1}{2-\sqrt{x}}$		
7.	If $y = x - \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$, then x is equal to			
	a) e^{y} b) $e^{y} + 1$	c) $\frac{1+2\sqrt{x}}{1-x}$ d) $\frac{1}{1-x}$		
	c) $e^{y} - 1$ d) $\log(1 + y)$	1-X 1 X		
58 .	$2.1^2 + 3.2^2 + 4.3^2 + \dots$ up to 10 terms =	3. Let S_n denote the sum of first n terms of an A.F.		
	a) 4310 b) 3640	If $S_{2n} = 3S_n$, then the ratio $\frac{S_{3n}}{S_n}$ is equal to		
	c) 3410 d) 4230	S_n is equal to		
59 .	If $1^2 + 2^2 + 3^2 + + n^2 = 1015$, then the value of	a) 4 b) 6		
	n is	c) 8 d) 10		
	a) 13 b) 14	4. The number of terms in the A.P. $a + b + \ldots + b$		
	c) 15 d) 16	is		
70.	The sum of n terms of the following series $12 + 22 + 24 + 45$	a) c b) $\frac{c-a}{b-a}$		
	$1.2 + 2.3 + 3.4 + 4.5 + \dots$ will be	a) c b) $\frac{c-a}{b-a}$		
	a) n^3 b) $\frac{1}{3}n(n+1)(n+2)$	b+c-2a b a		
	, , , , , , , , , , , , , , , , , , ,	c) $\frac{b+c-2a}{b-a}$ d) $\frac{a}{a+b}$		
	$\frac{1}{n(n+1)(n+2)}$ $\frac{1}{n(n+1)(2n+1)}$			
	c) $\frac{1}{6}n(n+1)(n+2)$ d) $\frac{1}{3}n(n+1)(2n+1)$	5. If a, b, c, are in A.P., then $\frac{a-b}{b-c}$ equals		
		0-c		
		a) $\frac{b}{a}$ b) $\frac{a}{b}$		
		a b		
		a		
		c) $\frac{d}{c}$ d) 1		
		6. If the numbers a, b, c, d, e form an A.P. then th		
		value of $a - 4b + 6c - 4d + e$ is		
		a) 1 b) 2		
		c) 0 d) - 1		
		7. In an A.P., $S_1 = 6$, $S_7 = 105$, then $S_n : S_{n-3}$ is same as		
		a) $(n+3):(n-3)$ b) $(n+3):n$		
		c) $n:(n-3)$ d) 1		

	DG	T MH –CET 11th MATH	IEMA	TICS Study Mate	rial
\bigcirc		Sequence	and S	eries	234
8.		es $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots$ upto 9	15.		on difference of an A.P. as got the sum of first 5 terms first five terms is
	terms is a) $\frac{-5}{6}$	b) $-\frac{1}{2}$	16.	 a) 25 c) - 35 The sum of first four 	 b) - 25 d) 35 terms of an A.P. is 56 and
	c) 1	d) $-\frac{3}{2}$		sum of last four term 11, then the number of a) 10	s is 112. If the first term is of terms is b) 12
9.	b and 2a. The numbe	last terms of an A.P. are a, r of terms in the A.P. is b	17.		d) none of these + 9.14 + 12.17 + will
	a) $\frac{b}{b-a}$	b) $\frac{b}{b+a}$ d) $\frac{a}{b+a}$	18.	 a) 3n(3n + 5) c) n(3n + 5) If the angles of a quad 	
10.	° u	git numbers which leave		common difference is quadrilateral are	 b) 75°, 85°, 95°, 105°
	a) 1616 c) 1605	b) 1602 d) 1606	10	c) 65°, 75°, 85°, 95°	d) 65°, 95°, 105°, 115°
11.	2	Q, where S_n denotes the	D	A.P., then a) $a = b \neq c$	and also $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in b) $a \neq b = c$
	common difference is a) $P + Q$		20.	c) $a = b = c$	
12.	c) 2Q Find the sum of three	d) Q e digit numbers, which are		(7n + 1) : (4n + 27), term will be a) 2 : 3	then the ratio of their 11thb) 3:4
	divisible by 7 ? a) 70770	b) 70330	21.	c) 4:3	
13.	piece of work in a ce	d) 70777 ngaged to finish a certain rtain number of days. Four		which are divisible by a) 142	b) 128
	dropped third day and to finish work now. I	e second day, four more l so on. It takes 8 more days Find the number of days in	22.	then x equals	d) 126 $\log_3 (4.3^x - 1)$ are in A.P.,
	which the work wasa) 25c) 15	b) 30 b) 10	23.	 a) log₃4 c) 1-log₄3 If the sum of n terms 	2
14.	,	erms of an A.P. whose last		the n th term will be a) 4n + 3 c) 4n + 6	b) $4n + 5$ d) $4n + 7$
	a) $\frac{n}{2}[2l+(n-1)d]$	b) $\frac{n}{2}[2l - (n-1)d]$	24.	The n th term of an A. the following, the sum	P. is $3n - 1$. Choose from n of its first five terms
	c) $\frac{n}{2}[l+(n-1)d]$	d) $\frac{n}{2}[l-(n-1)d]$		a) 14 c) 80	b) 35 d) 40

\bigcirc		Sequence	and S	eries	235
25.		in an arithmetic progression. their sum is 390. The middle		a) $5\left[\frac{2^n-1}{2^n}\right]$	b) $5\left[\frac{2^{n-1}-1}{2^n}\right]$
	a) 23c) 29	b) 26d) 32		c) $5\left[\frac{2^{n}-1}{2^{n-1}}\right]$	d) $5\left[\frac{2^{n-1}}{2^n}\right]$
	,	,			
26.	If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ be the	e A.M. of a and b, then $n =$	34.	If for a G.P., $t_3 = 36 a$ a) 8748	and $t_6 = 972$, then $t_8 = b$) 84
	a) 1	b) – 1		c) 4784	d) 88
	c) 0	d) 2	35.	If a, b, c are in G.P.,	
27.	The sum of n arithm	netic mean between a and b,		a) $a(b^2 + a^2) = c(b^2 + a^2)$ b) $a(b^2 + c^2) = c(a^2 + a^2)$	+ b
	a) $\frac{n(a+b)}{2}$	b) n(a + b)	26	c) $a^{2}(b + c) = c^{2}(a + d)$ d) none of these	,
	(n+1)(a+b)		36.	If for a G.P., $r = 2, t_9 =$	= 128, then a =
	Z	d) (n + 1) (a + b)		a) $\frac{1}{4}$	b) $\frac{1}{2}$
28.	-	M.'s between 2 and 38, the progression is 200. The value	-	c) $\frac{3}{4}$	d) $\frac{3}{2}$
	a) 10	b) 8	37.	The sum to n terms of	of 4+44+444+ is
	c) 9	d) 7	D)
29.	,	and $\log(2^n + 3)$ are in A.P.,	6	a) $\frac{1}{9} \left\{ \frac{10}{9} (10^n - 1) - \right\}$	n
	a) 5/2	b) log ₂ 5		b) $\frac{4}{9}\left\{\frac{10}{9}(10^{n}-1)\right\}$	
	c) $\log_3 5$	d) 3/2		4 (10)
30.	sequence is 15 and	e numbers of a arithmetic the sum of their squares is		c) $\frac{4}{9} \left\{ \frac{10}{9} \left(10^n - 1 \right) - \right. \right.$	n
	83, then the number			d) $\frac{4}{9} \left\{ \frac{1}{9} (10^n - 1) \right\}$	
	a) 4, 5, 6 c) 1, 5, 9	b) 3, 5, 7		9 9 9 9	
31.	If a, b, c are in A.P.	, then	38.	The n th term of the s	series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$
		(c + a - b) equals		is	2 4 0 10
	a) - abcc) 2 abc	b) abc d) 4 abc		a) $\frac{1+(n-1)2}{2^n}$	b) $1 - \frac{1}{2^n}$
	15.2 Geometric Pr	ogression (G.P.) and		2"	2"
		Mean (G.M.)		c) 2 ⁻ⁿ - 1	d) $\frac{1}{1}$
32.	If the third term of first five terms is	a G.P. is 4, then product of	39.	The sum of the first	2
	a) 4 ³	b) 4 ⁵		$\sqrt{2} + \sqrt{6} + \sqrt{18} + \dots$	is
	c) 4 ⁴	d) 4 ²		a) $121(\sqrt{6}+\sqrt{2})$	b) $\frac{121}{\sqrt{2}-1}$
33.	S_{n} of the G.P. $\frac{5}{2}, \frac{5}{4}$	$\frac{5}{8}, \frac{5}{16}, \dots$ is		c) $243(\sqrt{3}+1)$	

\bigcirc		Sequence	and S	Series	236
40.		terms of a G.P. are x^{-4} and ² is the eighth term of the en n is equal to b) 4	47.	$2.3\overline{45}$ in $\frac{p}{q}$ form is	
41	c) 5	d) 3 term is 24 and 9 th term is		a) $\frac{129}{55}$	b) $\frac{129}{56}$
41.	rol a G.P. whose 4 $768, S_{10} =$ a) $3(2^{10-1} - 1)$ c) $2(3^{10} - 1)$	b) $3(2^{10}-1)$		c) $\frac{55}{17}$	d) $\frac{155}{74}$
42.	, , ,	f $1 + (1 + x) + (1 + x + x^2)$	48.	If second term of G. infinite terms is 8, the	P. is 2 and the sum of its en its first term is
	-	b) $\frac{n}{1-x} - \frac{x(1-x^n)}{(1-x)^2}$		a) $\frac{1}{4}$ c) 2	b) $\frac{1}{2}$ d) 4
	c) $\frac{n}{1-x} + \frac{x(1-x^n)}{(1-x)^2}$	d) $\frac{n}{1-x} + \frac{x(1-x)^n}{(1-x)^2}$	49.	Sum of n terms of the $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$	
43.		the sum of first two terms n is 4 times the 3 rd term		2 4 8 16 a) $2^{n} - n - 1$	
	a) $\frac{-8}{3}, \frac{-14}{3}, \frac{-16}{3}, \dots$	or 4, – 8, 12, 16,	50.	c) $2^n - 1$ The sum to infinity of	d) $n + 2^{-n} - 1$
	b) $\frac{-8}{3}, \frac{-11}{3}, \frac{-16}{3}, \dots$	or 2, 4, 8,	D	$\frac{1}{7} + \frac{2}{7^2} + \frac{1}{7^3} + \frac{2}{7^4} + \dots$	is
	c) $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \dots$. or 4, -8, 16, -32,	6	a) $\frac{3}{16}$	b) $\frac{1}{5}$
	5 5 5	. or 4, -8, 12, 24,		c) $\frac{1}{24}$	d) $\frac{1}{16}$
44.	If 6 is added to its 2^n 3^{rd} term, the terms be	term and 7 is added to its added to A.P. Find the G.P.	51.	If $A = 1 + r^2 + r^{22} + r^{32}$ be	$x^2 + \dots \infty$, then the of r will
45.		b) 3, 6, 12 d) 1, 3, 9 m is 'a', second term is 'b'		a) $A(1 - A)^{z}$	b) $\left(\frac{A-1}{A}\right)^{\frac{1}{z}}$
		c', then sum of the series is b) $\frac{a^2 - bc}{a - b}$		c) $\left(\frac{1}{A}-\right)^{\frac{1}{z}}$	d) $A(1-A)^{\frac{1}{z}}$
	c) $\frac{a^3 - bc}{a + b}$	d) $\frac{a^3-b}{a+b}$	52.	If b is the G.M of a a	nd c, then $\frac{1}{b-a} + \frac{1}{b-c} =$
46.		erms of G.P. is equal to 244 first five terms. Then the		a) $\frac{1}{a}$	b) $\frac{1}{c}$
	a) 7 c) 4	b) 3d) 5		c) 1	d) $\frac{1}{b}$

()		Sequence	and S	eries	237
53.	two positive number	to geometric means between rs a and b then $\frac{g_1^2}{g_2} + \frac{g_2^2}{g_1}$ is	61.		P. is 7, the last term is 448is 889, then the commonb) 4
	equal to a) a + b	b) ab	()	c) 3 If C he the geometric	d) 2
	,	d) $\frac{ab}{a+b}$	02.	$\frac{1}{G^2 - x^2} + \frac{1}{G^2 - y^2} =$	e mean of x and y, then
54.	If the p th , q th and r th respectively, then a ^{q-} a) 0 c) abc	term of a G.P. are a, b, c ^r .b ^{r-p} .c ^{p-q} is equal to b) 1 d) pqr		a) G ²	b) $\frac{1}{G^2}$
55.	If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$	$b^n, z = \sum_{n=0}^{\infty} (ab)^n$, where	63.	c) $\frac{2}{G^2}$ The G.M. of the num	d) 3G ² bers 3, 3 ² , 3 ³ , is
	a, $b < l$,then	b) $xz + yz = xy + z$		a) $3^{\frac{2}{n}}$	b) $3^{\frac{n+1}{2}}$
56.	c) $xy + yz = xz + y$	d) $xy + xz = yz + x$ e terms of a G.P. to the sum		c) $3^{\frac{n}{2}}$	d) $3^{\frac{n-1}{2}}$
		125 : 27. The common ratio	64.	The value of 4 ^{1/3} . 4 ^{1/} a) 2 c) 4	b) 3 d) 9
	a) $\frac{1}{2}$	b) $\frac{3}{5}$	65.	The sum to infinity of	,
	c) $\frac{5}{3}$	d) $\frac{4}{5}$		$9-3+1-\frac{1}{3}+\dots$ is	
57.	Fifth term of a G.P. i 9 terms is	is 2, then the product of its		a) 9	b) $\frac{9}{2}$
	a) 256c) 1024	b) 512d) 128		c) $\frac{27}{4}$	d) $\frac{15}{2}$
58.	is 128 and common r	of a G.P. is 255 and n th term atio is 2, then first term will	66.	The first term of an int is x and its sum is 5.	finite geometric progression Then
	be a) 1	b) 3		· · · · · · · · · · · · · · · · · · ·	 b) 0 < x < 10 d) x > 10
59.	c) 7 The solution of the equation $1 + a + a^2 + a^3 + \cdots + a^4$	d) 2 quation $ax = (1 + a) (1 + a^2)(1 + a^4)$			<u>ssion, Harmonic_Mean</u> _A.M., G.M. and H.M.
	is given by x is equal a) 3		67.	If a, b, c are in H.P.,	then $\frac{a-b}{b-c}$ equals
60	c) 7 If in a geometric pro	d) -5		a) $\frac{a}{a}$	b) $\frac{a}{a}$
00.	and $S_n = 189$ then the	gression $\{a_n\}$, $a_1 = 3$, $a_n = 96$ e value of n is		a) — a	b) $\frac{a}{b}$
	a) 5c) 7	b) 6 d) 8		c) $\frac{a}{c}$	d) $\frac{1}{a}$

		Sequence	e and S	Series	238
8.		c mean between a and b, then	75.		d be added to the numbers e resulting numbers be the
	$\frac{c}{a} + \frac{c}{b}$ is equal to			consecutive terms of	a H.P.
				a) 7	b) 6
	a) 2	b) $\frac{a+b}{ab}$		c) - 6	d) – 7
	,		76.	In a H.P., p th term is o pq th term is	q and the q th term is p. Then
	c) $\frac{ab}{a+b}$	d) 1		a) 0	b) 1
		onic mean between a and b,		c) pq	d) $pq(p+q)$
	then $\frac{1}{H-a} + \frac{1}{H-b}$		77.		x be in H.P., then a, b, c are
	H-a H-t)		a) A.P.	b) H.P.
	1 1	$\frac{1}{1}$		c) G.P.	d) None of these
	a) $\frac{1}{a} - \frac{1}{b}$	a b	78.	,	erent positive real numbers,
	1	1			lowing relations is true
	c) $\frac{1}{a}$	d) $\frac{1}{b}$			-
0	If H is the harmoni	c mean between a and b, then		a) $2\sqrt{ab} > (a+b)$	b) $2\sqrt{ab} < (a+b)$
v.	$\frac{H+a}{H-a} + \frac{H+b}{H-b}$ is e			c) $2\sqrt{ab} = (a+b)$	
	$\frac{1}{H-a} + \frac{1}{H-b}$ is e	equal to	79.	If a, b, c are in A.P. a	
	1			$x = 1 + a + a^2 + \dots$	∞
	a) $\frac{1}{2}$	b) $-\frac{1}{2}$	D	$y = 1 + b + b + \dots \infty$	
	c) 2	d) 1	11	$\mathbf{z} = 1 + \mathbf{c} + \mathbf{c}^2 \dots \infty$	
1	· ·	harmonic progression is 8 and		Then x, y, z shall be i	n
1.	the 8 term is 7, th			a) A.P.	b) G.P.
	a) 16	b) 14		c) H.P.	d) None of these
	, 		80.	If a, b, c are in A.P.,	then 3 ^a , 3 ^b , 3 ^c shall be in
	c) $\frac{27}{14}$	d) $\frac{56}{15}$		a) A.P.	b) G.P.
	14	15		c) H.P.	d) None of these
2.	The harmonic mea	an of $\frac{a}{1-ab}$ and $\frac{a}{1+ab}$ is	81.	If the ratio of H.M. at 12 : 13, then the ratio	nd G.M. of two quantities is of the numbers is
	а	0		a) 1:2	b) 2:3
	a) $\frac{a}{\sqrt{1-a^2b^2}}$	b) $\frac{a}{1-a^2b^2}$		c) 3:4	d) 9:4
	$v_1 = a $ U		82.	,	nbers be 9 : 1, then the ratio
	c) a	d) $\frac{1}{1-a^2b^2}$			monic means between them
3.	If a, b, c, and b, c, c	dare in H.P., then $ab + bc + cd$		a) 1:9	b) 5:3
	1S			c) 3:5	
	a) 3ad	b) $(a + b)(c + d)$	83.	If a, b, c are in A.P.,	/
	c) 3ac	d) 3bd		then 10^{ax+10} , 10^{bx+10} , 1	0 ^{cx+10} will be
4.		numbers is 4. The A.M. 'A'		a) A.P.	
		' between them satisfy the 27. The numbers are		b) G.P. only when x	> 0
	a) $6, 3$	b) 4,2		c) G.P. for all values	
	u, 0, 5	0) 7,2		c_{j} 0.1. for all values	01 A

Sequence and Series
 239

 84. If
$$a^i = b^i = c^2$$
 and $a, b, c are in GP, then x, y, z are in
 a) A.P.
 b) GP.

 a) A.P.
 b) GP.
 c) H.P.
 d) None of these

 85. If $a, b, c are in A.P, then $2^{arei}, 2^{arei}, x \neq 0$
 are in
 a) A.P.
 b) GP. only when $x > 0$

 a) A.P.
 b) GP. only when $x > 0$
 c) GP. if $x < 0$
 d) GP. for all $x \neq 0$

 Ist-Arithmetice Geometric Procession (AGP)

 Procession (AGP)

 86. The sum of the series $1 + 2x + 3x^2 + 4x^{1+} \dots + 4x^{1+}$
 d) $\frac{n(n+1)(n+7)}{(1-x)^2}$
 d) $\frac{n(16n-7)}{3}$
 g) $\frac{n(16n^2 - 7)}{3}$
 g) $\frac{n(16n^2 - 7)}{3}$

 9) $\frac{1-x^n}{1-x}$
 $c) x^{n+1}$
 $c) x^{n+1}$
 $c) \sqrt{c}$
 $d) \frac{n(16n^2 - 7)}{3}$
 $b) \frac{n(16n^2 - 7)}{(1-x)^2}$
 $c) \frac{n(16n^2 + 7)}{4}$
 $d) \frac{n(16n^2 - 7)}{3}$
 $b) x^{n+1}$
 $c) \frac{n(16n^2 + 7)}{4}$
 $d) \frac{n(16n^2 - 7)}{3}$
 $b) \frac{n(16n^2 - 7)}{1-x^2}$
 $b) \frac{n(16n^2 - 7)}{3}$
 $b) \frac{n(16n^2 - 7)}{3}$
 $b) \frac{25}{1 + 2^2 + 3^2 + 4x^2 + 3^2 + 4x^{1 + 1} \dots$ upto n terms is a caula to a more the scum of the sum of first n a matrix numbers their squares and th$$

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

Sequence and Series24097. The sum to n terms of the sequence whose
$$r^{h}$$

term is $\frac{1+2+3+...+r}{r}$ is
a) $\frac{n(n+3)}{r}$ b) $\frac{n(n+5)}{4}$ 104. The sum of the series $\frac{2}{3t} + \frac{4}{51} + \frac{6}{71} +$ will be
a) e^{-1} d) e^{-2} a) $\frac{n(n+3)}{2}$ b) $\frac{n(n+3)}{4}$ (a) e^{-1} (b) e^{-2} (a) $\frac{n(n+5)}{2}$ d) $\frac{n(n+3)}{4}$ (b) 10 (c) $\frac{n(n+5)}{2}$ d) $\frac{n(n+3)}{4}$ (c) $2e^{-1}$ (c) $2e^{-1}$ (c) $\frac{n(n+5)}{2} + \frac{1}{3} + \frac{1}{51} + =$ (c) $2e^{-1}$ (c) $2e^{-1}$ (c) $\frac{e^{-1}}{2+1}$ d) $\frac{e^{+1}}{e^{-1}}$ (c) $2e^{-1}$ (c) $\frac{e^{-1}}{e+1}$ d) $\frac{e^{+1}}{e^{-1}}$ (c) $1e^{-1}$ (c) $\frac{e^{-1}}{e+1}$ d) $\frac{e^{+1}}{e^{-1}}$ (c) $n + \frac{1}{2}(1^{-3^{n}})$ d) $n + \frac{1}{2}(3^{n} - 1)$ (c) $\frac{e^{-1}}{e+1}$ d) $\frac{e^{+1}}{e^{-1}}$ (c) $n + \frac{1}{2}(1^{-3^{n}})$ d) $n + \frac{1}{2}(3^{n} - 1)$ (c) $\frac{e^{-1}}{e^{+1}}$ d) $\frac{100\sqrt{2}}{2}$ (c) $n + \frac{1}{2}(1^{-3^{n}})$ d) $n + \frac{1}{2}(3^{n} - 1)$ (c) $\frac{n^{2} + n + 1}{2}$ d) $\frac{n^{2} + 2n + 2}{2}$ (c) $\frac{n^{2} + 2n + 2}{2}$ (d) $\frac{n^{2} - 1}{2}$ d) $\frac{n^{2} + 2n + 2}{2}$ (d) $\frac{n(3n-1)}{2(n)!}$ d) $\frac{n(3n+1)}{2(n)!}$ (e) $\frac{n^{2} + n + 1}{2}$ d) $\frac{n^{2} + 2n + 2}{2}$ (d) $\frac{n(3n-1)}{2(n)!}$ d) $\frac{n(3n+1)}{2(n)!}$ (d) $\frac{n^{2} - 1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + + \frac{1}{n(n+1)}$ equals(a) $\frac{n^{2} + 2n + 1}{1 + 3 \times 4} + \frac{1}{1 + 2} + \frac{1}{1 + 3 \times 4} + \frac{1}{1 + 3 \times 5} + will be(a) $\frac{n^{2} + 2n + 1}{1 \times 2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4}$ d) $\frac{n^{2} - 2n + 1}{4}$ (c) $\frac{n^{2} + 2n + 1}{4}$ d) $\frac{n^{2} - 2n + 1}{4}$ (e) $\frac{n^{2} + 2n + 1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 2} + \frac{1}{4} + \frac{1}{4}$ (e) $\frac{n^{2$$

		Seque	ice and S	Series	241
l .	15.1 Arithmetic Arithme If the p th term o	itive Thinking <u>Progression (A. P.) and</u> <u>tic Mean (A.M.)</u> f an A.P. be q and q th term b	e 8.		th term of an A.P. is equal to erm of an A.P., then (p + q) b) 1 d) 3
2.	c) $p+r-q$	b) $p + q - r$ d) $p - q - r$ n θ , then the different values of	9. f	The sum of n ter	ms of two arithmetic series ar 3 : 6n + 5, then the ratio of thei b) 27 : 77
3.		 b) G.P. d) None of these the series 63 + 65 + 67 + 69 17 + 24 + be equal, then a 	÷	-	d) 31:89 rm of an A.P. for r = 1, 2, 3, we integers m, n we have $t_m = \frac{1}{n}$
١.	 a) 11 c) 13 The 9th term of t 			and $t_n = \frac{1}{m}$ then a) $\frac{1}{mn}$	b) $\frac{1}{m} + \frac{1}{n}$
	$27 + 9 + 5\frac{2}{5} + 3\frac{6}{7}$ a) $1\frac{10}{17}$ c) $\frac{16}{27}$	b) $\frac{10}{17}$ d) $\frac{17}{27}$	11.	 c) 1 If the sum of the 60100, then the r a) 100 c) 150 	m n d) 0 e series $2 + 5 + 8 + 11 + \dots$ i number of terms is b) 200 d) 250 natural numbers between 1 and
	a) 1 c) 3	A.P., then $\frac{(a-c)^2}{(b^2-ac)} =$ b) 2 d) 4		100 which are mua) 1680c) 1681If the sum of first the sum of its first	ultiples of 3 is b) 1683 d) 1682 at n terms of an A.P. be equal t rst m terms, $(m \neq n)$, then th
•	If $\log_3 2$, $\log_3 (2x)$ A.P., then x is eq a) 1, $\frac{1}{2}$ c) 1, $\frac{3}{2}$	- 5) and $\log_3\left(2^x - \frac{7}{2}\right)$ are injual to b) $1, \frac{1}{3}$ d) None of these		a) 0 c) m If $a_1, a_2, a_3, \dots, a_n$ i, then the value of	
•	If n th term of two	b A.P.'s are $3n + 8$ and $7n + 15$ their 12^{th} term will be b) $\frac{7}{16}$	j,	a) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$	$\frac{1}{2 + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} =$ b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$ $n+1$
	c) $\frac{3}{7}$	d) $\frac{8}{15}$		c) $\frac{n-1}{\sqrt{a_1}-\sqrt{a_n}}$	d) $\frac{n+1}{\sqrt{a_1}-\sqrt{a_n}}$

	Sequence	and S	Series 242
15.	If the sum of n terms of an A.P. is $nA + n^2B$, where A, B are constants, then its common difference will be a) $A - B$ b) $A + B$	23.	Let a_1, a_2, a_3, \dots be terms of an A.P. If $\frac{a_1 + a_2 + \dots + a_p}{a_1 + a_2 + \dots + a_q} = \frac{p^2}{q^2}, p \neq q$, then $\frac{a_6}{a_{21}}$ equals
			1 2 ų 1 21
16.	c) $2A$ d) $2B$ If a, b, c, d, e are in A.P., then the value of $a + b + 4c - 4d + e$ in terms of a, if possible is		a) $\frac{41}{11}$ b) $\frac{7}{2}$
	a) 4ab) 2ac) 3d) None of these		c) $\frac{2}{7}$ d) $\frac{11}{41}$
17.	The interior angles of a polygon are hi A.P. If the smallest angle be 120° and the common difference be 5° , then the number of sides is	24.	A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than
19	a) 8 b) 10 c) 9 d) 6		the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after
10.	If a , a_2 a_n are in A.P., with common difference, d, then, the sum of the following series is		a) 18 monthsb) 19 monthsc) 20 monthsd) 21 months
	sin d(cosec a_1 .cosec a_2 + cosec a_2 . cosec a_3 + + cosec a_{n-1} cosec a_n)	25.	Let $S_1, S_2,, S_{101}$ be consecutive terms of an
	a) sec $a_1 - \sec a_n$		A.P. If $\frac{1}{S_1S_2} + \frac{1}{S_2S_3} + \dots + \frac{1}{S_{100}S_{101}} = \frac{1}{6}$ and
	b) $\cot a_1 - \cot a_n$		$S_1 + S_{101} = 50$, then $ S_1 - S_{101} $ is equal to
	c) $\tan a_1 - \tan a_n$	D	a) 10 b) 20
10	d) cosec $a_1 - cosec a_n$	11	c) 30 d) 40
19.	If $a_1, a_2,, a_{n+1}$ are in A.P., then	26	,
		20.	If $a_1, a_2, a_3, \dots, a_n$ are in A.P. and $a_1 = 0$, then the value of
	$\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \dots + \frac{1}{a_na_{n+1}}$ is		
	a) $\frac{n-1}{2}$ b) $\frac{1}{2}$		$\left(\frac{a_3}{a_2} + \frac{a_4}{a_3} + \frac{a_n}{a_{n-1}}\right) - a_2\left(\frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{n-2}}\right)$
	$a_1 a_{n+1}$ $a_1 a_{n+1}$		is equal to
	c) $\frac{n+1}{a_1 a_{n+1}}$ d) $\frac{n}{a_1 a_{n+1}}$		a) $(n-2) + \frac{1}{(n-2)}$ b) $\frac{1}{(n-2)}$
20.	If sum of n terms of an A.P. is $3n^2 + 5n$ and $T_m = 1.64$ then m =		c) $n-2$ d) $n-1$
	a) 26 b) 27	27.	The first four terms of an A.P. are
	c) 28 d) -26		a, 9, $3a - b$, $3a + b$. The 2011 th term of the A.P. is
21.	If x, y, z are in A.P. and $\tan^{-1}x$, $\tan^{-1}y$ and $\tan^{-1}z$ are also in A.P., then		a) 2015b) 4025c) 5030d) 8045
	a) $x = y = z$ b) $x = y = -z$	28.	The sequence $\log a$, $\log \frac{a^2}{b}$, $\log \frac{a^3}{b^2}$, is
	c) $x = 1, y = 2, z = 3$ d) $x = 2, y = 4, z = 6$		b^{2} b^{2} b^{2} b^{2}
22.	If the roots of the equation		a) A.G.P.
	$x^{3} - 12x^{2} + 39x - 28 = 0$ are m A.P., then their		b) an A.P.
	common difference will be		c) a H.P.
	a) ± 1 b) ± 2		d) both a G.P. and a H.P.
	c) ± 3 d) ± 4		

Sequence and Series

- **29.** A person is to count 4500 currency notes. Let a_n denote the number of notes he counts in the nth minute. If $a_1 = a_2 = \dots = a_{10} = 150$ and a_{10}, a_{11}, \dots are in an A.P. with common difference 2, then the time taken by him to count all notes is a) 24 minutes b) 34 minutes c) 125 minutes d) 135 minutes
- **30.** The sum of all two digit natural numbers which leave a remainder 5 when they are divided by 7 is equal to
 - a) 715 b) 702
 - c) 615 d) 602
- **31.** An A.P. consists of 23 terms. If the sum of the three terms in the middle is 141 and the sum of the last three terms is 261, then the first term is
 - a) 6 b) 5
 - c) 4 d) 3
- **32.** If $S_1 = a_2 + a_4 + a_6 + \dots$ upto 100 terms and $S_2 = a_1 + a_3 + a_5 + \dots$ upto 100 terms of a certain A.P., then its common difference is
 - a) $S_1 S_2$ b) $S_2 - S_1$ c) $\frac{S_1 - S_2}{2}$ d) None of these
- **33.** If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is
 - a) 150
 - b) 150 times its 50th term
 - c) 150
 - d) zero

<u>15.2 Geometric Progression (G.P.) and</u> <u>Geometric Mean (G.M.)</u>

34. If the 4th, 7th and 10th terms of a G.P. be a, b, c respectively, then the relation between a, b, c is

a)
$$b = \frac{a+c}{2}$$
 b) $a^2 = bc$

c)
$$b^2 = ac$$
 d) $c^2 = ab$

- **35.** If x, 2x + 2, 3x + 3 are in G.P., then the fourth term is
 - a) 27 b) 27 c) 13.5 d) - 13.5
 - d = 15.5
- **36.** If x, y, z are in G.P. and $a^x = r^y = c^z$, then
 - a) $\log_a c = \log_b a$ b) $\log_b a = \log_c b$ c) $\log_a b = \log_a c$ d) ab = bc

MATHEMATICS - XI OBJECTIVE

37. If the 5th term of a G.P. is $\frac{1}{3}$ and 9th term is $\frac{16}{243}$, then the 4th term will be a) $\frac{3}{4}$ b) $\frac{1}{2}$

c)
$$\frac{1}{3}$$
 d) $\frac{2}{5}$

38. If every term of a G.P. with positive term is the sum of its two previous terms, then the common ratio of the series is

a) 1
b)
$$\frac{2}{\sqrt{5}}$$

c) $\frac{\sqrt{5}-1}{2}$
d) $\frac{\sqrt{5}+1}{2}$

39. The sum of few terms of any ratio series is 728, if common ratio is 3 and last term is 486, then first term of series will be

a) 2	b) 1
c) 3	d) 4

40. If five G.M.'s are inserted between 486 and $\frac{2}{3}$,

b) 6

d) - 6

then fourth G.M. will be

41. Let (n > 1) be a positive integer, then the largest integer m such that (n^m + 1) divides

$$(1 + n + n^2 + \dots + n^{127})$$
, is

- a) 32 b) 63 c) 64 d) 127
- **42.** The value of $0.2\dot{3}\dot{4}$ is

a)	$\frac{232}{990}$	b)	$\frac{232}{9990}$
c)	$\frac{232}{909}$	d)	$\frac{232}{999}$

43. If $3 + 3\alpha + 3\alpha^2 + \dots \infty = \frac{45}{8}$, then the value of α will be

a) $\frac{15}{23}$	b) $\frac{7}{15}$
c) $\frac{7}{8}$	d) $\frac{15}{7}$

	DG	T MH –CET 11th MATH	IEMA	TICS Study Mate	rial
\bigcirc		Sequence	and S	eries	244
44.	$x = 1 + a + a^2 + \dots$	∞ (a < 1)	50.	The sum of the serie	S
	$y = 1 + b + b^2 \dots \infty$	(b < 1)		5.05 + 1.212 + 0.290	
	Then, the value of 1 -	$+ ab + a^2b^2 +\infty$ is		a) 6.93378	b) 6.87342
	,	V V	51	c) 6.74384 The sum of the serie	a) 6.64474 es $3 + 33 + 333 + \dots + n$
	a) $\frac{xy}{x+y-1}$	b) $\frac{xy}{x+y+1}$	51.	terms is	222 - 223 - 11
	c) $\frac{xy}{x-y-1}$	d) $\frac{xy}{x-y+1}$		a) $\frac{1}{27}(10^{n+1}+9n-2)$	28)
45.	$0.4\dot{2}\dot{3} =$			b) $\frac{1}{27}(10^{n+1}-9n-1)$	0)
	a) $\frac{419}{990}$	b) $\frac{419}{999}$		c) $\frac{1}{27}(10^{n+1}+10n-$	9)
	c) $\frac{417}{990}$	d) $\frac{417}{999}$		27 d) 27	
46.	If $y = x - x^2 + x^3 - x^4$ will be	$+$ ∞ , then value of x	52.		ith common ratio 3 is 364, then the number of terms is
	、 1	V V		a) 6	b) 5
	a) $y + \frac{1}{y}$	b) $\frac{y}{1+y}$	52	c) 4	d) 10
	1	v	53.	The G.M. of roots of t	the equation $x^2 - 18x + 9 = 0$
	c) $y - \frac{1}{y}$	d) $\frac{y}{1-y}$	D	a) 3	b) 4
47.	The sum of infinite t	erms of a G.P. is x and on	11	c) 2	d) 1
	squaring the each ter then the common rati	m of it, the sum will be y, o of this series is	54.	common ratio r, its su	G.P. with first term a and um is 4 and the second term
	a) $\frac{x^2 - y^2}{x^2 + y^2}$	b) $\frac{x^2 + y^2}{x^2 - y^2}$		is 3/4, then	
	2	X y		a) $a = \frac{7}{4}, r = \frac{3}{7}$	b) $a = \frac{3}{2}, r = \frac{1}{2}$
	c) $\frac{x^2 - y}{x^2 + y}$	d) $\frac{x^2 + y}{x^2 - y}$		3	n 2 ¹
48.	If S is the sum to inf	inity of a G.P., whose first		c) $a = 2, r = \frac{3}{8}$	d) $a = 3, r = -\frac{4}{4}$
		m of the first n terms is	55.	The sum of infinite	e terms of the geometric
	a) $S\left(1-\frac{a}{S}\right)^n$	b) $S\left[1-\left(1-\frac{a}{S}\right)^n\right]$		progression $\frac{\sqrt{2}+1}{\sqrt{2}-1}$,	$\frac{1}{2-\sqrt{2}}, \frac{1}{2}$ is
	$\begin{bmatrix} & & \\ & & \end{pmatrix}^n \end{bmatrix}$			a) $\sqrt{2} (\sqrt{2} + 1)^2$	b) $(\sqrt{2}+1)^2$
	c) $a \left[1 - \left(1 - \frac{a}{S}\right)^n \right]$	d) $\left(1-\frac{a}{S}\right)$		c) $5\sqrt{2}$	
49.	0.14189189189., can	be expressed as a rational	56.	If the sum of the ser	les
	number 7	7		$1 + \frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots$	∞ is a finite number, then
	a) $\frac{7}{3700}$	b) $\frac{7}{50}$		a) x > 2	b) $x > -2$
	c) $\frac{525}{111}$	d) $\frac{21}{148}$		c) $x > \frac{1}{2}$	d) $x < \frac{1}{2}$

		Sequence	and S	Series	245
57.	If $1 + \cos \alpha + \cos^2 \alpha$ $(0 < \alpha < \pi)$ is	$+ \dots \infty = 2 - \sqrt{2}$, then α ,		a) - 12 c) 4	b) 12 d) - 4
58.	 a) π/8 c) π/4 	 b) π/6 d) 3π/4 a, b, c are in G.P., then x, y, 	65.	Three numbers w	hose sum is 15 are in A.P. I 1, 4 and 19 respectively the
	z will be in a) A.P. c) H.P.	b) G.P.d) None of these		 a) 2,5,8 b) 26, 5, -16 c) 2, 5, 8 and 26, 3 d) None of these 	5, – 16
59.		ties $\frac{10}{9}, \frac{1}{3}, \sqrt{\frac{20}{3}}, \frac{2}{3}, \dots$ is	66.		ite geometric series is $\frac{4}{3}$ and
	a) $\frac{1}{3}$	b) 1 $\sqrt{2}$		its 1 st term is $\frac{3}{4}$, the second sec	hen its common ratio is
	c) $\frac{2}{5}$	d) $\sqrt{\frac{2}{3}}$		a) $\frac{7}{16}$	b) $\frac{9}{16}$
9 0.	The value of $1 - 1^2 + a$) i c) $1 - i$	$i^{3} - i^{4} + \dots - i^{100}$ is equal to b) - i d) 0	7	c) $\frac{1}{9}$	d) $\frac{7}{9}$
51.	If a_1, a_2, \dots, a_{50} are $\frac{a_1 - a_3 + a_5 \dots + a_4}{a_2 - a_4 + a_6 - \dots + a_6}$	<u>9</u> 1 ₅₀	D	terms are integers, a) 16 c) 12	= 216 and $t_4 : t_6 = 1 : 4$ and al , then its first term is b) 14 d) None of these
	a) 0 c) $\frac{a_1}{a_2}$	b) 1 d) $\frac{a_{25}}{a_{24}}$	68.		ite geometric series with firs mon ratio 'r'. If the sum is $\frac{3}{4}$, then
	a) 16 c) 64	b) $\frac{1}{(32)^{1/6}}$ to ∞ is b) 32 d) 0		a) $a = 2, r = \frac{3}{8}$	b) $a = \frac{4}{7}, r = \frac{3}{7}$
3.	If $1 + \sin x + \sin^2 x$ $0 < x < \pi$ and $x \neq \frac{\pi}{2}$	+ upto $\infty = 4 + 2\sqrt{3}$, , then x =	69.	<i>L L</i>	d) $a = 3$, $r = \frac{1}{4}$ positive numbers in a G.P., then
	a) $\frac{\pi}{3}, \frac{2\pi}{3}$	b) $\frac{\pi}{6}, \frac{\pi}{3}$			hadratic equation b)x + $(\log_e c) = 0$ are
	c) $\frac{\pi}{3}, \frac{5\pi}{6}$	d) $\frac{2\pi}{3}, \frac{\pi}{6}$		a) -1 and $\frac{\log_e c}{\log_e a}$	
64.	add up to 12. The sur terms is 48. If the progression are altern	of a geometric progression n of the third and the fourth terms of the geometric ately positive and negative,		b) 1 and $\frac{\log_e c}{\log_e a}$ c) 1 and $\log_a c$	
	then the first term is			d) -1 and $\log_{e}a$	

	Seque	ance and Series 246
	ic Progression, Harmonic Mean 1 between A.M., G.M. and H.M.	
	erm of the H.P. 2, $2\frac{1}{2}$, $3\frac{1}{3}$, w	ill a) $x^2 - 16x - 25 = 0$ b) $x^2 - 8x + 5 = 0$ c) $x^2 - 16x + 25 = 0$ d) $x^2 + 16x - 25 = 0$
be a) $5\frac{1}{5}$ c) $\frac{1}{10}$	b) $3\frac{1}{5}$ d) 10	77. If a, b, c are in H.P., then which one of the following is true? a) $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{b}$ b) $\frac{ac}{a+c} = b$
71. If a_1, a_2, a_3	,, a _n are in H.P., then	c) $\frac{b+a}{b-a} + \frac{b+c}{b-c} = 1$ d) None of these
a) a_1a_n	+ $a_{n-1}a_n$ will be equal to b) na_1a_n	78. The product of n positive numbers is unity. Their sum is
	$a_1 a_n$ d) $n - 1$ of a H.P. is $\frac{1}{45}$ and 11^{th} term is $\frac{1}{6}$	a) A positive integer b) Equal to $n + \frac{1}{n}$
	th term will be	9' c) Divisible by n d) Never less than n79. If H is the harmonic mean between p and q, then
a) $\frac{1}{89}$	b) $\frac{5}{21}$	the value of $\frac{H}{p} + \frac{H}{q}$ is
c) $\frac{1}{80}$	d) $\frac{1}{79}$	a) 2 b) $\frac{pq}{p+q}$
$x^2 - 10x +$		c) $\frac{p+q}{pq}$ d) None of these
a) $\frac{1}{5}$	b) $\frac{5}{11}$	80. If three numbers be in G.P., then their logarithms will be in
c) $\frac{21}{20}$	d) $\frac{11}{5}$	a) A.P.b) G.P.c) H.P.d) None of these
74. The sixth	H.M. between 3 and $\frac{6}{13}$ is	 81. If x, 1, z are in A.P. and x, 2, z are in G.P., then x, 4, z will be in a) A.P b) G.P.
a) $\frac{63}{120}$	b) $\frac{63}{12}$	 c) H.P. d) None of these 82. If A₁, A₂ are the two A.M.'s between two
c) $\frac{126}{105}$	d) $\frac{120}{63}$	numbers a and b and G_1 , G_2 be two G.M.'s between same two numbers, then $\frac{A_1 + A_2}{G_1 \cdot G_2} =$
u i t	$\int_{0}^{n+1} be$ the harmonic mean between the value of n is	
a) 1c) 0	b) - 1 d) 2	c) $\frac{2ab}{a+b}$ d) $\frac{ab}{a+b}$

b, then a : b will b $\frac{2-\sqrt{3}}{2+\sqrt{3}}$ $\frac{\sqrt{3}-2}{\sqrt{3}+2}$ $y+z = 15 \text{ if } 9, y$ $\frac{1}{y} + \frac{1}{z} = \frac{5}{3} \text{ if } 9, x, y$ e of a will be	b) $\frac{2+\sqrt{3}}{2-\sqrt{3}}$	92.	a) $\log(x - z)$ by c) $3\log(x - z)$ d If b^2 , a^2 , c^2 are in A.P., the be in a) A.P. by c) H.P. d If H ₁ , H ₂ are two harmonon positive numbers a and be arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d	en $a + b$, $b + c$, $c + a$ will) G.P.) None of these nic means between two $b(a \neq b)$, A and G are the
b, then a : b will b $\frac{2-\sqrt{3}}{2+\sqrt{3}}$ $\frac{\sqrt{3}-2}{\sqrt{3}+2}$ $y+z = 15 \text{ if } 9, y$ $\frac{1}{y} + \frac{1}{z} = \frac{5}{3} \text{ if } 9, x, y$ e of a will be $\frac{+y}{2}, y, \frac{y+z}{2} \text{ are}$ A.P.	b) $\frac{2+\sqrt{3}}{2-\sqrt{3}}$ d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ c, y, z, a are in A.P.; while y, z, a are in H.P., then the b) 2 d) 9	93.	c) $3\log (x - z)$ d If b^2 , a^2 , c^2 are in A.P., the be in a) A.P. by c) H.P. d If H_1 , H_2 are two harmony positive numbers a and be arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d) $4\log(x - z)$ en a + b, b + c, c + a will) G.P.) None of these nic means between two b(a \neq b), A and G are the c means between a and) $\frac{A}{2G^2}$
$\frac{2-\sqrt{3}}{2+\sqrt{3}}$ $\frac{\sqrt{3}-2}{\sqrt{3}+2}$ $y+z = 15 \text{ if } 9, y$ $\frac{1}{y}+\frac{1}{z}=\frac{5}{3} \text{ if } 9, x,$ e of a will be $\frac{+y}{2}, y, \frac{y+z}{2} \text{ are}$ A.P.	b) $\frac{2+\sqrt{3}}{2-\sqrt{3}}$ d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ s, y, z, a are in A.P.; while y, z, a are in H.P., then the b) 2 d) 9	93.	If b^2 , a^2 , c^2 are in A.P., the be in a) A.P. by c) H.P. dy If H_1 , H_2 are two harmon positive numbers a and by arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ dy	en a + b, b + c, c + a will) G.P.) None of these nic means between two b(a \neq b), A and G are the c means between a and) $\frac{A}{2G^2}$
$\frac{\sqrt{3}-2}{\sqrt{3}+2}$ y + z = 15 if 9, y $\frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ if 9, x, e of a will be $\frac{+y}{2}$, y, $\frac{y+z}{2}$ are	d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ d, y, z, a are in A.P.; while y, z, a are in H.P., then the b) 2 d) 9	93.	be in a) A.P. by c) H.P. d If H_1 , H_2 are two harmopositive numbers a and by arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d) G.P.) None of these nic means between two (a \neq b), A and G are the c means between a and) $\frac{A}{2G^2}$
$\frac{\sqrt{3}-2}{\sqrt{3}+2}$ y + z = 15 if 9, y $\frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ if 9, x, e of a will be $\frac{+y}{2}$, y, $\frac{y+z}{2}$ are	d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ d) $\frac{\sqrt{3}+2}{\sqrt{3}-2}$ d, y, z, a are in A.P.; while y, z, a are in H.P., then the b) 2 d) 9		a) A.P. by c) H.P. d If H_1 , H_2 are two harmo positive numbers a and b arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d) None of these nic means between two $b(a \neq b)$, A and G are the c means between a and) $\frac{A}{2G^2}$
y + z = 15 if 9, y $\frac{1}{y} + \frac{1}{z} = \frac{5}{3} \text{ if } 9, x, y$ e of a will be $\frac{+y}{2}, y, \frac{y+z}{2} \text{ are}$	 b) 2 c) 4 d) 9 		c) H.P. d If H ₁ , H ₂ are two harmo positive numbers a and b arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d) None of these nic means between two $b(a \neq b)$, A and G are the c means between a and) $\frac{A}{2G^2}$
y + z = 15 if 9, y $\frac{1}{y} + \frac{1}{z} = \frac{5}{3} \text{ if } 9, x, y$ e of a will be $\frac{+y}{2}, y, \frac{y+z}{2} \text{ are}$	 b) 2 c) 4 d) 9 		If H ₁ , H ₂ are two harmo positive numbers a and b arithmetic and geometric b, then a) $\frac{2A}{G}$ b c) $\frac{A}{G^2}$ d	nic means between two $p(a \neq b)$, A and G are the c means between a and $\frac{A}{2G^2}$
y + z = 15 if 9, y $\frac{1}{y} + \frac{1}{z} = \frac{5}{3} \text{ if } 9, x, y$ e of a will be $\frac{+y}{2}, y, \frac{y+z}{2} \text{ are}$	 b) 2 c) 4 d) 9 		positive numbers a and b arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d	$(a \neq b)$, A and G are the c means between a and) $\frac{A}{2G^2}$
$\frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ if 9, x, e of a will be $\frac{+y}{2}$, y, $\frac{y+z}{2}$ are	y, z, a are in H.P., then the b) 2 d) 9	94.	arithmetic and geometric b, then a) $\frac{2A}{G}$ by c) $\frac{A}{G^2}$ d	c means between a and) $\frac{A}{2G^2}$
e of a will be $\frac{y}{2}$, $y, \frac{y+z}{2}$ are x.P.	b) 2 d) 9	94.	a) $\frac{2A}{G}$ b c) $\frac{A}{G^2}$ d	20
e of a will be $\frac{y}{2}$, $y, \frac{y+z}{2}$ are x.P.	b) 2 d) 9	94.	c) $\frac{A}{G^2}$ d	20
$\frac{+y}{2}$, y, $\frac{y+z}{2}$ are A.P.	d) 9	94.	c) $\frac{A}{G^2}$ d	20
$\frac{+y}{2}$, y, $\frac{y+z}{2}$ are	d) 9	94.	0	$\frac{2A}{r^2}$
$\frac{y}{2}$, y, $\frac{y+z}{2}$ are A.P.	,	94.	0	$\frac{2A}{\sigma^2}$
.Р.	in H.P., then x, y, z are in	94.	0	/ (+ 2
.Р.	e in H.P., then x, y, z are in	94.	If a h a ara in C D and	U
		1	If a, b, c are in G.P. and means between a, b and	-
	b) G.P.			
1.1.	d) None of these		$\frac{a}{x} + \frac{c}{y}$ is equal to	
ne ratio of H.M	and G.M. between two	7		\ 1
bers a and b is 4 :) 1
		10-		·
		95.		i.dy are in the ratio p : q
			a) $p - \sqrt{p^2 + q^2} : p + \sqrt{p}$	$p^2 + q^2$
			1 $\sqrt{a^2 a^2}$ \sqrt{a}	$\frac{2}{2}$ α^{2}
-				0 – q
			c) $p + q$	
			d) $p + \sqrt{p^2 + q^2}$: $p - \sqrt{p}$	$p^2 + q^2$
	-	96		
х.Р.	b) H.P.	20.		
J.P.	d) A.G.P.		a) $p = q = r$ by	
	-		c) $p+q=r$ d) None of these
	-	97.	Let a be a positive numbe	er such that the arithmetic
			mean of a and 2 exceed	-
	,		-	
			,) 5
- 1, y - 1, Z - 1 8	ut III ().r., IIICII	0.0	· · · · · · · · · · · · · · · · · · ·) 8 U ha twa A Ma CMa
$\frac{1}{\log x}, \frac{1}{1+\log y}, \frac{1}{1}$	$\frac{1}{1 + \log z}$ are in	98.	If $A_1 A_2$; G_1 , G_2 and H_1 , and H.M.s. between two	
νP	b) H P		then $\frac{G_1G_2}{X} \times \frac{H_1 + H_2}{X} =$	
	, ,		H_1H_2 $A_1 + A_2$	
	·		a) 1 b)) 0
-			c) 2 d) 3
	bers a and b is 4 : bers will be : 2 : 1 is the A.M. of 2ax + b = 0 and C equation $x^2 - 2bx$ A > G A = G e altitudes of a tr s of the triangle a A.P. b.P. by goes to school f m/hour and cor h/hour, then the a A.M. H.M. > 1, y > 1, z > 1 a $\frac{1}{\log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log y}$:2 b) 1:4 :1 d) (b) and (c) is the A.M. of the roots of the equation 2ax + b = 0 and G is the G.M. of the roots of equation $x^2 - 2bx + a^2 = 0$, then $A > G$ b) $A \neq G$ A = G d) $A < Ge altitudes of a triangle are in A.P., then thes of the triangle are inA.P. b) H.P.B.P. d) A.G.P.by goes to school from his home at a speed ofm/hour and comes back at a speed ofh/hour, then the average speed is given byA.M. b) G.M.H.M. d) None of these> 1, y > 1, z > 1$ are in G.P., then $\frac{1}{\log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ are in A.P. b) H.P.	bers a and b is 4 : 5, then the ratio of the two bers will be : 2 b) 1 : 4 : 1 d) (b) and (c) is the A.M. of the roots of the equation 2ax + b = 0 and G is the G.M. of the roots of equation $x^2 - 2bx + a^2 = 0$, then $A > G$ b) $A \neq G$ A = G d) $A < Ge altitudes of a triangle are in A.P., then thes of the triangle are inA.P. b) H.P.G.P. d) A.G.P.by goes to school from his home at a speed ofm/hour and comes back at a speed ofm/hour, then the average speed is given byA.M. b) G.M.H.M. d) None of these> 1, y > 1, z > 1 are in G.P., then\frac{1}{\log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z} are inA.P. b) H.P.G.P. d) None of thesey, z are in H.P., then the value of expression98.$	he ratio of H.M. and G.M. between two bers a and b is 4 : 5, then the ratio of the two bers will be : 2 b) 1 : 4 : 1 d) (b) and (c) is the A.M. of the roots of the equation 2ax + b = 0 and G is the G.M. of the roots of 2ax + b = 0 and A < G $4b + \sqrt{p^2 + q^2} : p - \sqrt{p}$ $4c + p^2 + $

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

\bigcirc	Sequence	and Series	248			
99. If a, b, c are in (G.P., then $\log_a x.$, $\log_b x$, $\log_c x$ are	106. The geometric	mean of 1,2,2 ² ,, 2n is			
in		<u>n</u>	b) $2^{\frac{(n+1)}{2}}$			
a) A.P.	b) G.P.	a) $2^{\frac{n}{2}}$	b) 2 ²			
c) H.P.	d) None of these	c) $2^{\frac{n(n+1)}{2}}$	d) $2^{\frac{(n-1)}{2}}$			
	-z) and $(y - z)$ are in H.P., then	$c) 2^{2}$	u) <u>2</u> 2			
x - a, y - a, z - a	b) G.P.	107. The value of	n for which $\frac{x^{n+1} + y^{n+1}}{x^n + y^n}$ is the			
a) A.P.c) H.P.	<i>,</i>		$x^n + y^n$			
,	d) None of these A.P. and a^2 , b^2 , c^2 are in H.P., then	geometric mean	n of x and y is			
a) $a \neq b \neq c$, 1				
,		a) $n = -\frac{1}{2}$	b) $n = \frac{1}{2}$			
b) $a^2 = b^2 = \frac{c^2}{2}$	_	c) $n = 1$	d) $n = -1$			
c) a, b, c are ir		108. G.M. and H.M	. of two numbers are 10 and 8			
	1 U.F.	respectively. Th	he numbers are			
d) $\frac{-a}{2}$, b, c are	e in G.P.	a) 5,20	b) 4,25			
2		c) 2,50	d) 1,100			
	are positive real numbers whose ed number c, then the minimum	109. The value of 1 ²	$-2^2 + 3^2 - 4^2 + \dots + 11^2$ is equal			
•	$a_{1}^{+} + \dots + a_{n-1}^{-} + 2a_{n}$ is	to				
		a) 55	b) 66			
a) $n(2c)^{\overline{n}}$	b) $(n+1)c^{\frac{1}{n}}$	c) 77	d) 88			
	d) $(n+1)(2c)^{\frac{1}{n}}$		2. Then, the number of real values $f(x) = f(2x)$			
c) $2nc^n$	d) $(n+1)(2c)^n$	f(4x) are in H.I	he three unequal terms $f(x)$, $f(2x)$, b is			
	ean of two positive numbers is A,	a) 1	b) 0			
H, then H is eq	mean is G and harmonic mean is	c) 3	d) 2			
-			,			
a) $\frac{G^2}{A}$	b) $\frac{G}{A^2}$	<u>15.4 Arithmetico Geometric</u> <u>Progression (A.G.P.)</u>				
11	A					
c) $\frac{A^2}{G^2}$	d) $\frac{A}{G^2}$	111. $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3}$	$+\ldots\infty$ is equal to			
	between two numbers is 48 and	a) 3	b) 6			
	etween their arithmetic mean and mean is 18. Then, the greater of	c) 9	d) 12			
two numbers is	-	112. The sum of infi	nite terms of the following series			
a) 96	b) 60	$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3}$	+ will be			
c) 54	d) 49	$5 5^2 5^3$				
105. If three real n	umbers a, b, c are in harmonic	3	35			
	en which of the following is true?	a) $\frac{3}{16}$	b) $\frac{1}{8}$			
<u>, 1 , 1 </u> .	- A D	35	35			
a) $\frac{1}{a}$, b, $\frac{1}{c}$ are i	n A.P.	c) $\frac{35}{4}$	d) $\frac{35}{16}$			
. 1 1 1		113. The sum to infi	nity of the series,			
b) $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$	are in H.P.					
c) ab, bc, ca a		$1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ is				
		5 5 5	5			
d) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are	e in H.P.	a) 2	b) 3			
0 0 u		c) 4	d) 6			

	Sequence	e and Series	249
		120. The sum of $1^3 + 2$	$3^{3} + 3^{3} + 4^{3} + \dots + 15^{3}$, is
114. If $t_n = \frac{-4}{4}(n+2)$	$(n+3)$ for $n = 1, 2, 3, \dots$, then	a) 22,000	b) 10,000
1 1 1	1	c) 14,400	d) 15,000
$\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \dots$	$+\frac{1}{t_{2003}} =$	121. The n th term of se	ries
4006	4003	1 1+2 1+2+	3
a) $\frac{4006}{3006}$	b) $\frac{4003}{3007}$	$\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+}{3}$	+ will be
c) $\frac{4006}{3008}$	d) $\frac{4006}{3009}$	n + 1	n — 1
3008	d) 3009	a) $\frac{n+1}{2}$	b) $\frac{11}{2}$
115. If $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$	$\infty = \frac{\pi^4}{90}$, then the value of	2	2
1^4 2^4 3^4	90	c) $\frac{n^2 + 1}{2}$	d) $\frac{n^2 - 1}{2}$
$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{3^4} \dots$	∞ is	2	2
1 5 5			eries $1.3^2 + 2.5^2 + 3.7^2 + \dots$
a) $\frac{\pi^4}{96}$	b) $\frac{\pi^4}{\pi^4}$	upto 20 terms is	b) 100000
ý 96	^y 45	,	b) 189080
c) $\frac{89}{90}\pi^4$	d) None of these	c) 199080	d) 188809
90		123. Sum of the n term	is of the series
	eries, Exponential series,	$\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{1}{1^2 + 2^2}$	$\frac{7}{1}$ + is
	arithmic series	1^2 1^2 1^2 $+$ 2^2 1^2 $+$	$2^2 + 3^2$
	series $1 + (1+2) + (1+2+3) + (1+2+3) + (1+2+3) + (1+2+3)$	DCT ² n	4n
upto n ter		$D(a) \frac{2n}{n+1}$	b) $\frac{4n}{n+1}$
a) $n^2 - 2n + 6$	b) $\frac{n(n+1)(2n-1)}{6}$	67	0
		c) $\frac{6n}{n+1}$	d) $\frac{9n}{n+1}$
c) $n^2 + 2n + 6$	d) $\frac{n(n+1)(n+2)}{6}$		
117. The sum 1(1!) +	$-2(2!) + 3(3!) + \dots + n(n!)$ equals	124. $1 + 3 + 7 + 15 + 3$	
	b) $(n + 1)! - (n - 1)!$		b) $2^{n+1} - n - 2$
	d) $2(n!) - 2n - 1$	c) $2^{n}-n-2$ 125. $2+4+7+11+1$	
118. The sum of the	series	125.2 + 4 + 7 + 11 + 1	$6 + \dots$ to n terms =
3.6 + 4.7 + 5.8	+ upto $(n - 2)$ terms	a) $\frac{1}{n^2}(n^2+3n+8)$	b) $\frac{n}{6}(n^2+3n+8)$
a) $n^3 + n^2 + n + n^2$	- 2	6	6
b) $\frac{1}{6}(2n^3+12)$	$n^2 + 10n - 84)$	c) $\frac{1}{2}(n^2-3n+8)$	d) $\frac{n}{6}(n^2-3n+8)$
-	,	6	6 (n 5n+6)
c) $n^3 + n^2 + n$ d) $2n^3 + 12n^2 + n^2$	10n	126. Sum of n terms of	series
119. The sum of the		12+16+24+40+	+will be
	$3.4.5 + \dots$ to n terms is	a) $2(2^n - 1) + 8n$	
a) $n(n+1)(n+2)$		b) $2(2^n - 1) + 6n$	
b) $(n+1)(n+2)$		c) $3(2^n - 1) + 8n$	
c) $\frac{1}{4} n(n+1)(n+1)$	(n+2)(n+3)	d) $4(2^n - 1) + 8n$	
⁴ 4	и · 2)(Ш · 3)	127. 99 th term of the ser	ties $2 + 7 + 14 + 23 + 34 + \dots$ is
D) $\frac{1}{2}(n+1)(n-1)$	(+2)(n+3)	a) 9998	b) 9999
D) $\frac{1}{4}$ (n + l)(n -	+ 2)(1 + 3)	c) 10000	d) 9988

Sequence and Series

128. If the sum of first n terms of an A. P. is cn², then the sum of squares of these n terms is

a)
$$\frac{n(4n^2-1)c^2}{6}$$
 b) $\frac{n(4n^2+1)c^2}{3}$

c)
$$\frac{n(4n^2-1)c^2}{3}$$
 d) $\frac{n(4n^2+1)c^2}{6}$

129.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$$
 is equal to

a)
$$\frac{n(n+1)(2n+1)}{6}$$
 b) $\left[\frac{n(n+1)}{2}\right]^2$

c)
$$\frac{n(n+1)}{2}$$
 d) $\frac{n(n+1)(n+2)}{6}$

130. The sum of the series

 $(1+2)+(1+2+2^2)+(1+2+2^2+2^3)+....$ upto n terms is a) $2^{n+2}-n-4$ b) $2(2^n-1)-n$ c) $2^{n+1}-n$ d) $2^{n+1}-1$

131. For any integer
$$n \ge 1$$
, the sum $\sum_{k=1}^{n} k (k+2)$ is

equal to

a)
$$\frac{n(n+1)(n+2)}{6}$$
 b) $\frac{n(n+1)(2n+1)}{6}$
c) $\frac{n(n+1)(2n+7)}{6}$ d) $\frac{n(n+1)(2n+9)}{6}$

132. The sum of the first n terms of

$$\frac{1^{2}}{1} + \frac{1^{2} + 2^{2}}{1 + 2} + \frac{1^{2} + 2^{2} + 3^{2}}{1 + 2 + 3} + \dots \text{ is}$$

a) $\frac{n^{2} - 2n}{3}$ b) $\frac{2n^{2} + n}{3}$
c) $\frac{n(n+2)}{3}$ d) $\frac{2n^{2} - n}{3}$

133. Sum of n terms of the following series

$$1^3 + 3^3 + 5^3 + 7^3 + \dots$$
 is
a) $n^2(2n^2 - 1)$ b) $n^3(n - 1)$

a)
$$n(2n-1)$$

c) $n^3 + 8n + 4$
d) $2n^4 + 3n^2$

Evaluation Test

1. If $a_1, a_2, a_3, ..., a_n$ are in A.P. with common difference 5 and if $a_i a_j \neq -1$ for i, j = 1, 2, ..., n,

then
$$\tan^{-1}\left(\frac{5}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{5}{1+a_2a_3}\right) + \dots + \tan^{-1}\left(\frac{5}{1+a_{n-1}a_n}\right)$$

is equal to

a)
$$\tan^{-1}\left(\frac{5}{1+a_{n}a_{n-1}}\right)$$
 b) $\tan^{-1}\left(\frac{5a_{1}}{1+a_{n}a_{1}}\right)$
c) $\tan^{-1}\left(\frac{5n-5}{1+a_{n}a_{1}}\right)$ d) $\tan^{-1}\left(\frac{5n-5}{1+a_{1}a_{n+1}}\right)$

2. Let a_1, a_2, a_3, \dots be in harmonic progression with ai = 5 and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is

If p, q, r are in A.P. and are positive, the roots of the quadratic equation $px^2 + qx + r = 0$ are all real for

a)
$$\left|\frac{\mathbf{r}}{\mathbf{p}} - 7\right| \ge 4\sqrt{3}$$
 b) $\left|\frac{\mathbf{p}}{\mathbf{r}} - 7\right| < 4\sqrt{3}$

c) all p and r d) no p and r If a, b, c be respectively the pth, qth and rth terms

of a G.P., then
$$\Delta = \begin{vmatrix} \log a & \log b & \log c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$$
 equals

a) 1

3.

4.

b) 0

- c) 1
- d) None of these
- 5. If x₁, x₂, x₃, as well as y₁, y₂, y₃ are in G.P. with the same common ratio, then the points

 $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3)

- a) lie on a straight line
- b) lie on an ellipse
- c) lie on a circle
- d) are vertices of a triangle

MATHEMATICS - XI OBJECTIVE

Sequence and Series

 \bigcap

\bigcirc	Sequence	and S	Series 2451
6.	Let S , S ₂ , be squares such that for each $n \ge 1$, ¹ the length of a side of S _n equals the length of a diagonal of S _{n +1} . If the length of a side of S ₁ is 10 cm, then for which of the following values of n is the area of S _n less than 1sq. cm?	8.	Given that a, b, c are in A.P. The determinant $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$ in its simpliest form is
	a) 7 b) 8 c) 5 d) 6		equal to a) $x^3 + 3ax + 7c$ b) 0 c) 15 d) $10x^2 + 5x + 2c$
7.	If the p th term of an A.P. be $\frac{1}{q}$ and q th term be	9.	The sum of the series $1 + \frac{1.3}{6} + \frac{1.3.5}{6.8} + \dots \infty$ is
	$\frac{1}{p}$, then the sum of its (pq) th terms will be	10.	a) 1 b) 0 c) ∞ d) 4 A man arranges to pay off a debt of % 3600 by
	a) $\frac{pq-1}{2}$ b) $\frac{1-pq}{2}$	10.	40 annual installments which are in A.P. When 30 of the installments are paid he dies leaving one third of the debt unpaid. The value of the 8 th
	c) $\frac{pq+1}{2}$ d) $-\frac{pq+1}{2}$		installment is a) 735 b) 750 c) 765 d) None of these
			0000

1

MATHEMATICS - XI OBJECTIVE

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

Sequence and Series

252

1. (B) 2. (B) 3. (B) 4. (C) 5. (A) 6. (D) 7. (C) 8. (B) 9. (A) 10. (11. (A) 12. (B) 13. (B) 14. (A) 15. (B) 16. (B) 17. (C) 18. (C) 19. (A) 20. (21. (B) 22. (A) 23. (A) 24. (D) 25. (C) 26. (C) 27. (A) 28. (B) 29. (D) 30. (31. (C) 32. (B) 33. (A) 34. (B) 35. (A) 36. (C) 37. (C) 38. (A) 39. (A) 40. (41. (A) 42. (B) 43. (D) 44. (C) 45. (B) 46. (A) 47. (D) 48. (B) 49. (B) 50. (51. (C) 52. (D) 53. (A) 54. (C) 55. (C) 56. (D) 57. (A) 58. (B) 59. (A) 60. (61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (C) 7. (A) 8. (D) 9. (A) 10. (11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61.
11. (A) 12. (B) 13. (B) 14. (A) 15. (B) 16. (B) 17. (C) 18. (C) 19. (A) 20. (21. (B) 22. (A) 23. (A) 24. (D) 25. (C) 26. (C) 27. (A) 28. (B) 29. (D) 30. (31. (C) 32. (B) 33. (A) 34. (B) 35. (A) 36. (C) 37. (C) 38. (A) 39. (A) 40. (41. (A) 42. (B) 43. (D) 44. (C) 45. (B) 46. (A) 47. (D) 48. (B) 49. (B) 50. (51. (C) 52. (D) 53. (A) 54. (C) 55. (C) 56. (D) 57. (A) 58. (B) 59. (A) 60. (61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (C) 7. (A) 8. (C) 69. (B) 70. (Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (
21. (B) 22. (A) 23. (A) 24. (D) 25. (C) 26. (C) 27. (A) 28. (B) 29. (D) 30. (31. (C) 32. (B) 33. (A) 34. (B) 35. (A) 36. (C) 37. (C) 38. (A) 39. (A) 40. (41. (A) 42. (B) 43. (D) 44. (C) 45. (B) 46. (A) 47. (D) 48. (B) 49. (B) 50. (51. (C) 52. (D) 53. (A) 54. (C) 55. (C) 56. (D) 57. (A) 58. (B) 59. (A) 60. (61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (A) 67. (C) 68. (C) 69. (B) 70. (Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65
41. (A) 42. (B) 43. (D) 44. (C) 45. (B) 46. (A) 47. (D) 48. (B) 49. (B) 50. (51. (C) 52. (D) 53. (A) 54. (C) 55. (C) 56. (D) 57. (A) 58. (B) 59. (A) 60. (61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (A) 67. (C) 68. (C) 69. (B) 70. (Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 64. (A) 65.
51. (C) 52. (D) 53. (A) 54. (C) 55. (C) 56. (D) 57. (A) 58. (B) 59. (A) 60. (61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (A) 67. (C) 68. (C) 69. (B) 70. (C) Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (C) 11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (C) 21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (C) 31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (C) 41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (C) 51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 51. (C) 52. (C) 53. (C) 55.
61. (D) 62. (C) 63. (D) 64. (A) 65. (D) 66. (A) 67. (C) 68. (C) 69. (B) 70. (Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (11. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C) 60. (C) 61. (C) 62. (C) 63. (C) 64. (C) 65. (C) 66. (C) 66. (C) 67. (C) 68. (C) 69. (C) 69. (C) 60. (C) 61. (C) 62. (C) 63. (C) 64. (C) 65. (C) 66. (C) 67. (C) 68. (C) 69.
Critical Thinking 1. (C) 2. (C) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (D) 9. (A) 10. (II. (D) 12. (C) 13. (A) 14. (B) 15. (D) 16. (C) 17. (A) 18. (B) 19. (C) 20. (II. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (II. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (II. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (II. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (II. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (II. (II. (II. (II. (II. (II. (II. (I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (C) 27. (A) 28. (B) 29. (B) 30. (A) 31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (A) 41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (A) 51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (A) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (A)
31. (D) 32. (B) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (B) 39. (A) 40. (A) 41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (C) 51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (C) 61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C)
41. (B) 42. (B) 43. (C) 44. (A) 45. (B) 46. (B) 47. (A) 48. (D) 49. (D) 50. (51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C)
51. (B) 52. (D) 53. (A) 54. (B) 55. (B) 56. (B) 57. (B) 58. (A) 59. (C) 60. (61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (C)
61. (D) 62. (B) 63. (B) 64. (A) 65. (C) 66. (B) 67. (C) 68. (A) 69. (B) 70. (
71. (D) 72. (C) 73. (A) 74. (A) 75. (D) 76. (B) 77. (C) 78. (B) 79. (C) 80. (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
91. (A) 92. (D) 93. (D) 94. (B) 95. (A) 96. (B) 97. (D) 98. (C) 99. (B) 100. (
101. (A) 102. (C) 103. (D) 104. (A) 105. (B) 106. (D) 107. (B) 108. (B) 109. (C)
Competitive Thinking
1. (B) 2. (A) 3. (C) 4. (A) 5. (D) 6. (D) 7. (A) 8. (A) 9. (A) 10. (
11. (B) 12. (B) 13. (A) 14. (A) 15. (D) 16. (D) 17. (C) 18. (B) 19. (D) 20. (
21. (A) 22. (C) 23. (D) 24. (D) 25. (A) 26. (A) 27. (D) 28. (B) 29. (B) 30. (
31. (D) 32. (D) 33. (D) 34. (C) 35. (D) 36. (B) 37. (B) 38. (D) 39. (A) 40. (
41. (C) 42. (A) 43. (B) 44. (A) 45. (A) 46. (D) 47. (C) 48. (B) 49. (D) 50. (
51. (B) 52. (A) 53. (A) 54. (D) 55. (A) 56. (A) 57. (D) 58. (A) 59. (C) 60. (
61. (C) 62. (C) 63. (A) 64. (A) 65. (C) 66. (A) 67. (C) 68. (D) 69. (C) 70. (
71. (C) 72. (A) 73. (D) 74. (A) 75. (B) 76. (C) 77. (D) 78. (D) 79. (A) 80. (
81. (C) 82. (A) 83. (B) 84. (A) 85. (B) 86. (D) 87. (C) 88. (B) 89. (C) 90. (
91. (B) 92. (C) 93. (D) 94. (C) 95. (B) 96. (A) 97. (D) 98. (A) 99. (C) 100. (
101. (D) 102. (A) 103. (A) 104. (D) 105. (B) 106. (A) 107. (A) 108. (A) 109. (B) 110. (A)
111. (B) 112. (D) 113. (B) 114. (D) 115. (A) 116. (D) 117. (C) 118. (B) 119. (C) 120. (
121. (A) 122. (A) 123. (C) 124. (B) 125. (B) 126. (D) 127. (A) 128. (C) 129. (D) 130. (
131. (C) 132. (C) 133. (A)

Answers to Evaluation	lest
-----------------------	------

1. (C)	2. (D)	3. (A)	4.(B)	5. (A)	6. (B)	7. (C)	8.(B)	9. (D)	10.(C)
--------	--------	--------	-------	--------	--------	--------	-------	--------	--------

MATHEMATICS - XI OBJECTIVE

Classical Thinking

Classica	al l'hinkin	8					- 2A	. 4	
1. (B) 11. (A) 21. (B) 31. (C) 41. (A) 51. (C) 61. (D)	 (B) (B) (A) (B) (B) (B) (D) (C) 	 (B) 13. (B) 23. (A) 33. (A) 43. (D) 53. (A) 63. (D) 	4. (C) 14. (A) 24. (D) 34. (B) 44. (C) 54. (C) 64. (A)	5. (A) 15. (B) 25. (C) 35. (A) 45. (B) 55. (C) 65. (D)	 6. (D) 16. (B) 26. (C) 36. (C) 46. (A) 56. (D) 66. (A) 	7. (C) 17. (C) 27. (A) 37. (C) 47. (D) 57. (A) 67. (C)	8. (B) 18. (C) 28. (B) 38. (A) 48. (B) 58. (B) 68. (C)	9. (A) 19. (A) 29. (D) 39. (A) 49. (B) 59. (A) 69. (B)	10. (B) 20. (D) 30. (A) 40. (D) 50. (A) 60. (B) 70. (B)
Critical	l Thinking	[. s. ²	20 E) 21 E) 21	10 17 17	4) 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	. + . 1
1. (C) 11. (D) 21. (B) 31. (D) 41. (B) 51. (B) 61. (D) 71. (D) 81. (D) 91. (A) 101. (A)	2. (C) 12. (C) 22. (B) 32. (B) 42. (B) 52. (D) 62. (B) 72. (C) 82. (B) 92. (D) 102. (C)	 (B) (A) (A) (A) (A) (A) (C) (A) (C) (A) (B) (A) (B) (A) (B) (C) (D) (D) (D) 	4. (C) 14. (B) 24. (D) 34. (A) 44. (A) 54. (B) 64. (A) 74. (A) 84. (C) 94. (B) 104. (A)	5. (D) 15. (D) 25. (B) 35. (B) 45. (B) 55. (B) 65. (C) 75. (D) 85. (D) 95. (A) 105. (B)	 6. (C) 16. (C) 26. (C) 36. (B) 46. (B) 56. (B) 66. (B) 76. (B) 86. (A) 96. (B) 106. (D) 	7. (A) 17. (A) 27. (A) 37. (C) 47. (A) 57. (B) 67. (C) 77. (C) 87. (B) 97. (D) 107. (B)	 8. (D) 18. (B) 28. (B) 38. (B) 48. (D) 58. (A) 58. (A) 68. (A) 78. (B) 88. (A) 98. (C) 108. (B) 	9, (A) 19. (C) 29. (B) 39. (A) 49. (D) 59. (C) 69. (B) 79. (C) 89. (B) 99. (B) 109. (C)	10. (C) 20. (C) 30. (B) 40. (B) 50. (A) 60. (B) 70. (C) 80. (B) 90. (A) 100. (C)
Compe	titive Thin	king					-	61 	
1. (B) 11. (B) 21. (A) 31. (D) 41. (C)	2. (A) 12. (B) 22. (C) 32. (D) 42. (A)	3. (C) 13. (A) 23. (D) 33. (D) 43. (B)	4. (A) 14. (A) 24. (D) 34. (C) 44. (A)	5. (D) 15. (D) 25. (A) 35. (D) 45. (A)	6. (D) 16. (D) 26. (A) 36. (B) 46. (D)	7. (A) 17. (C) 27. (D) 37. (B) 47. (C)	8. (A) 18. (B) 28. (B) 38. (D) 48. (B)	9. (A) 19. (D) 29. (B) 39. (A) 49. (D)	10. (C) 20. (B) 30. (B) 40. (B) 50. (D)
51. (B) 61. (C) 71. (C) 81. (C) 91. (B) 101. (D)	52. (A) 62. (C) 72. (A) 82. (A) 92. (C) 102. (A)	53. (A) 63. (A) 73. (D) 83. (B) 93. (D) 103. (A)	54. (D) 64. (A) 74. (A) 84. (A) 94. (C) 104. (D)	55. (A) 65. (C) 75. (B) 85. (B) 95. (B) 105. (B)		57. (D) 67. (C) 77. (D) 87. (C) 97. (D) 107. (A)	58. (A) 68. (D) 78. (D) 88. (B) 98. (A) 108. (A)	59. (C) 69. (C) 79. (A) 89. (C) 99. (C) 109. (B)	60. (D) 70. (D) 80. (A) 90. (B) 100. (B) 110. (A)
0.52 550	112. (D) 122. (A) 132. (C)	113. (B) 123. (C) 133. (A)	114. (D) 124. (B)	115. (A) 125. (B)	116. (D) 126. (D)		118. (B) 128. (C)	119. (C) 129. (D)	120. (C) 130. (A)
Classic	al Thinkin	g				$\sqrt{3}$, d = $\sqrt{12}$			

- 1. a = 72, d = -2Let nth term be 40.
- \therefore $t_n = a + (n-1)d$
- \therefore 40 = 72 + (n 1) (- 2)
 - \Rightarrow n = 17

.. $t_{10} = \sqrt{3} + 9\sqrt{3} = 10\sqrt{3} = \sqrt{300}$ 3. a = 3, d = 3Let there be n terms. .. 3 + (n - 1)3 = 111 $\Rightarrow n = 37$

4.
$$d-c = c - d$$

 $\Rightarrow 2d = e + c$
 $\Rightarrow 2d - 2c = e - c$
 $\Rightarrow 2(d-c) = e - c$
5. a, b, c are in A.P., dividing by bc we get
 $\frac{a}{bc}, \frac{1}{c}, \frac{1}{b}$ are in A.P.
6. $S_n = 3(4^{n-1} - 1)$
 $\therefore S_{n-1} = 3(4^{n-1} - 1)$
 $\therefore S_{n-1} = 3(4^{n-1} - 1) - 3(4^{n-1} - 1) = 9(4^{n-1})$
7. $a = 21, d = 16 - 21 = -5$
 $t_n = a + (n - 1)d$
 $\therefore t_{15} = 21 + (15 - 1)(-5) = 21 - 70 = -49$
8. $S_n = \frac{n}{2} [2a + (n - 1)d]$
 $\therefore 784 = 8 (8 + 15d)$
 $\therefore 8 + 15d = \frac{784}{8}$
 $\therefore 15d = 90$
 $\therefore d = 6$
9. $t_7 = 40 \Rightarrow a + 6d = 40$
 $S_{13} = \frac{13}{2} [2a + (13 - 1)d] = 13(a + 6d) = 520$
10. $t_4 = a + 3d = 4$ and
 $S_7 = \frac{7}{2} [2a + (7 - 1)d] = \frac{7}{2} [2a + 6d]$
 $= 7(a + 3d)$
 $= 7(4) = 28$
11. Required sum $= 1 + 3 + 5 + \dots$ upto n terms
 $= \frac{n}{2} [2 \times 1 + (n - 1)2]$
 $= n^2$
12. $S_5 = \frac{1}{4} (S_{10} - S_5) \Rightarrow 5S_5 = S_{10}$
 $\therefore 5 \times \frac{5}{2} (2 \times 2 + 4d) = \frac{10}{2} (2 \times 2 + 9d)$
 $\Rightarrow d = -6$
13. The terms of given sequence are in A.P. with
 $a = 1, d = 5$ and $S_n = 148$
 $\therefore \frac{n}{2} [2a + (n - 1)d] = 148 \Rightarrow n = 8$
Now, $x = n^6$ term $\Rightarrow x = a + (n - 1)d = 36$

14.
$$S_{n} = 3n^{2} - n$$

$$\Rightarrow 3n^{2} - n = \frac{n}{2} [2a + (n-1)6]$$

$$\Rightarrow a = 2$$
15. Given series
$$\left(3 - \frac{1}{n}\right) + \left(3 - \frac{2}{n}\right) + \left(3 - \frac{3}{n}\right) + \dots (A.P.)$$
Therefore, common difference
$$d = \left(3 - \frac{2}{n}\right) - \left(3 - \frac{1}{n}\right) = -\frac{1}{n} \text{ and first term}$$

$$a = \left(3 - \frac{1}{n}\right)$$
Now, pth term of the series = a + (p-1)d
$$= \left(3 - \frac{1}{n}\right) + (p-1)\left(-\frac{1}{n}\right)$$

$$= 3 - \frac{1}{n} + \frac{1}{n} - \frac{p}{n} = \left(3 - \frac{p}{n}\right)$$
16. Given that, 9th term = a + (9-1)d = 0
$$\Rightarrow a + 8d = 0$$
Now, ratio of 29th and 19th terms
$$= \frac{a + 28d}{a + 18d} = \frac{(a + 8d) + 20d}{(a + 8d) + 10d} = \frac{20d}{10d} = \frac{2}{1}$$
17. Let the first term and common difference of an
A.P. be A and D respectively.
Now, pth term = A + (p-1)D = a
$$q^{th} term = A + (p-1)D = b$$
and r^{th} term = A + (p-1)D = c
$$\therefore a(q - r) + b(r - p) + c(p - q)$$

$$= a\left\{\frac{b - c}{D}\right\} + b\left\{\frac{c - a}{D}\right\} + c\left\{\frac{a - b}{D}\right\}$$

$$= \frac{1}{D}(ab - ac + bc - ab + ca - bc) = 0$$

18. Given that first term a = 10, last term l = 50and sum S = 300

$$\therefore \qquad S = \frac{n}{2} (a+l) \Longrightarrow 300 = \frac{n}{2} (10+50) \Longrightarrow n = 10$$

19. $(x + 1) + (x + 4) + \dots + (x + 28) = 155$ Let n be the number of terms in the A.P. on L.H.S. Then, $x + 28 = (x + 1) + (n - 1) 3 \Rightarrow n = 10$ (x + 1) + (x + 4) + + (x + 28) = 155 $\Rightarrow \frac{10}{2} [(x+1) + (x+28)] = 155$ $\Rightarrow x = 1$

20.
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

⇒ 406 $= \frac{n}{2} [6 + (n - 1)4]$
⇒ 812 = n[6 + 4n - 4] ⇒ 812 = 2n + 4n²
⇒ 406 = 2n² + n ⇒ 2n² + n - 406 = 0
⇒ n = $\frac{-1 \pm \sqrt{1 + 4.2.406}}{2.2} = \frac{-1 \pm \sqrt{3249}}{4}$
 $= \frac{-1 \pm 57}{4}$
Taking (+) sign, n = $\frac{-1 + 57}{4} = 14$
21. Here, $\frac{1}{3}$, A_1 , A_2 , $\frac{1}{24}$ will be in A.P.,
then $A_1 - \frac{1}{3} = \frac{1}{24} - A_2$
 $\Rightarrow A_1 + A_2 = \frac{3}{8}$ (i)
Now, A_1 is a arithmetic mean of $\frac{1}{3}$ and A_2 .
 $\therefore 2A_1 = \frac{1}{3} + A_2 \Rightarrow 2A_1 - A_2 = \frac{1}{3}$ (ii)
From (i) and (ii), we get $A_1 = \frac{17}{72}$ and $A_2 = \frac{5}{36}$
22. Let the two numbers be a and b and let A_1, A_2, \ldots, A_n be the n A.M's between them.
Then a, A_1, A_2, \ldots, A_n be are in A.P. and let d
be the common difference.
Now, $T_{a_{12}} = b = a + (n + 2 - 1)d$
 $\Rightarrow d = \frac{b-a}{n+1}$
Also, $A_1 + A_2 + \ldots + A_n = S_{n+1} - a$
 $= \frac{1}{2}(n+1)[2a + (n+1-1)\frac{(b-a)}{(n+1)}] - a$
 $= \frac{n}{2}[2a + (b-a)] = \frac{n}{2}(a + b) = n\left(\frac{a+b}{2}\right)$
 \therefore S = Na
23. Let the three numbers be a + d, a, a - d. therefore, $a + d + a + a - d = 33$
 $\Rightarrow a = 11$
and $a(a + d)(a - d) = 792$
 $\Rightarrow 11(121 - d^3) = 792 \Rightarrow d = 7$
The required numbers are 4, 11, 18. Hence, the smallest number is 4.
24. $d = -1 + 2i, t_4 - t_5 + d - 6 - 2i + (-1 + 2i) = 5$
which is purely real.

25.
$$t_n = ar^{n-1} = 1\left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-1}$$

26. $a = 5, r = 3$
 $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{5(3^n - 1)}{2}$
28. $a = 1, r = 3$
 $S_n = \frac{a(r^n - 1)}{r - 1}$
3280 $= \frac{3^n - 1}{2}$
6561 $= 3^n$
 $\Rightarrow 3^8 = 3^n \Rightarrow n = 8$
31. $t_n = ar^{n-1} = 1, (2)^{n-1} = 2^{n-1}$
32. $S_n = 2 + 22 + 222 + ..., n \text{ terms}$
 $= 2 [1 + 11 + 111 + ..., n \text{ terms}]$
 $= \frac{2}{9} [(10 - 1) + (100 - 1) + (1000 - 1) + ..., n \text{ terms}]$
 $= \frac{2}{9} [10 (\frac{10^n - 1}{10 - 1}) - n] = \frac{2}{9} [\frac{10}{9} (10^n - 1) - n]$
 $= \frac{2}{81} [10(10^n - 1) - 9n]$
33. $S_n = 0.9 + 0.99 + 0.999 + ..., n \text{ terms}$
 $= 1 - 0.1 + 1 - 0.01 + 1 - 0.001 + ..., n \text{ terms}]$
 $= 1 - 0.1 + 1 - 0.01 + 1 - 0.001 + ..., n \text{ terms}]$
 $= n - 0.1 [\frac{1 - (0.1)^n}{1 - 0.1}]$
 $= n - \frac{1}{9} [1 - (0.1)^n]$
 $= 9n - [1 - (0.1)^n]$
 $= n - \frac{1}{3}$
 $\therefore r = 1 - \frac{1}{3}$
 $\therefore r = 1 - \frac{1}{3}$

33

DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

35.
$$a = 3, r = \frac{\left(\frac{-3}{2}\right)}{3} = \frac{-1}{2}$$

 $\Rightarrow t_n = ar^{n-1} = 3\left(\frac{-1}{2}\right)^{n-1}$

36. $S_8 = 82 (S_4)$ Let the G.P. be $a + ar + ar^2 + ...,$ then $\frac{a(1-r^8)}{1-r} = 82 \left\{ \frac{a(1-r^4)}{1-r} \right\}$ $\therefore (1-r^4)(1+r^4) = 82(1-r^4) \Rightarrow r = 3$ 37. a = 3 and $r = \frac{12}{3} = 4 > 1$

$$\therefore \qquad S_n = a \left[\frac{r^n - 1}{r - 1} \right] = 3 \left[\frac{4^n - 1}{4 - 1} \right] = 4^n - 1$$

38.
$$S_n = \frac{a(r^n - 1)}{r - 1}, r = 2$$

 $\therefore S_8 = \frac{a(2^8 - 1)}{2 - 1} \Rightarrow a(2^8 - 1) = 510 \Rightarrow a = 2$
 $\therefore t_3 = 2(2)^{3 - 1} = 2(2)^2 = 8$

- 39. Let n be the number of terms needed. For G.P. 2, 2², 2³, ..., a = 2, r = 2 and $S_n = 30$ $S_n = \frac{a(r^n - 1)}{r - 1} \Rightarrow 30 = \frac{2(2^n - 1)}{2 - 1} \Rightarrow n = 4$
- 40. a, 8, b are in G.P. and $a \neq b$ $\Rightarrow \frac{8}{a} = \frac{b}{8}$ $\Rightarrow ab = 64$ and a, b, -8 are in A.P. $\Rightarrow b - a = -8 - b$ $\therefore b = \left(\frac{a - 8}{2}\right)$ Solving, a = 16 and b = 4
- 41. Let the numbers be a, ar, ar^2 $Sum = 70 \Rightarrow a(1 + r + r^2) = 70$ It is given that 4a, 5ar, 4ar² are in A.P.

$$\therefore \quad 2(5ar) = 4a + 4ar^2 \Rightarrow r = 2 \text{ or } r = \frac{1}{2}$$

Substituting values of r, a = 10 and a = 40
$$\therefore \quad \text{The numbers are 10, 20, 40 or 40, 20, 10}$$

42. $\frac{g_1}{p} = \frac{q}{g_2} \Rightarrow g_1g_2 = pq$

- 43. $t_3 = ar^{3-1} = ar^2 = 20$ and $t_7 = ar^{7-1} = ar^6 = 320$ Solving, a = 5 and r = 2
- 44. Let r be common ratio of G.P. $\Rightarrow t_3 = r^2, t_5 = r^4$ $\therefore t_3 + t_5 = 90 \Rightarrow r^2 + r^4 = 90$ $\Rightarrow r^2 = 9$ $\Rightarrow r = \pm 3$
- 46. Accordingly, $ar^9 = 9$ and $ar^3 = 4$ $r^3 = \frac{3}{2}$ and $a = \frac{8}{3}$ $\therefore 7^{\text{th}}$ term i.e., $ar^6 = \frac{8}{3} \left(\frac{3}{2}\right)^2 = 6$

Trick : 7^{th} term is equidistant from 10^{th} and 4^{th} so it will be $\sqrt{9 \times 4} = 6$.

- 47. Given sequence is $\sqrt{2}, \sqrt{10}, \sqrt{50}$ Common ratio $r = \sqrt{5}$, first term $a = \sqrt{2}$, then 7th term $t_7 = \sqrt{2}(\sqrt{5})^{7-1}$ $= \sqrt{2}(\sqrt{5})^6 = \sqrt{2}(5)^3 = 125\sqrt{2}$
- 48. Let 1,a, b, 64 $\Rightarrow a^2 = b$ and $b^2 = 64a$ $\Rightarrow a = 4$ and b = 16

:: H < G < A

49. Let numbers are $\frac{a}{r}$, a, ar

According to given conditions,

 $\frac{a}{r} \cdot a \cdot ar = 216$ $\Rightarrow a = 6$ And, sum of product pairwise = 156 $\Rightarrow \frac{a}{r} \cdot a + \frac{a}{r} \cdot ar + a \cdot ar = 156$ $\Rightarrow r = 3$ Hence, numbers are 2, 6, 18. Trick : Since $2 \times 6 \times 18 = 216$ (as given) and no other option gives the value. 50. According to condition, $\frac{3/4}{1-r} = \frac{4}{3}$ $\Rightarrow r = \frac{7}{16}$ 51. $G^2 = AH$ $\Rightarrow 144 = 25H$ $\Rightarrow H = 5.76$

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

54.

56. Considering corresponding A.P. ** a + 6d = 10 and $a + 11d = 25 \implies d = 3$, a = -8 \Rightarrow t₂₀ = a + 19d = -8 + 57 = 49 Hence, 20^{th} term of the corresponding H.P. is $\frac{1}{40}$. 62. $(A.M.) (H.M.) = (G.M)^2$ 57. \Rightarrow 9. 36 = (G.M)² \Rightarrow G.M. = 18 Here a = 3, d = 2 and r = r58. Now $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} (|r| < 1)$ $S_{\infty} = \frac{3}{1-r} + \frac{2r}{(1-r)^2}$... $\frac{44}{9} = \frac{3-r}{(1-r)^2}$... 64. 100 $44r^2 - 79r + 17 = 0$ $r = \frac{1}{4}$ or $\frac{17}{11}$ But, $r \neq \frac{17}{11}$ = 6435 $r = \frac{1}{7}$ *.*... 65. Let $S = 1 + 3x + 5x^2 + 7x^3 + \dots$ 59. Then, $xS = 1x + 3x^2 + 5x^3 + \dots$ $S - xS = 1 + 2x + 2x^2 + 2x^3 + \dots$ to ∞ $S(1-x) = 1 + 2x + 2x^2 + 2x^3 + \dots$ to ∞ $=1+\frac{2x}{1-x}=\frac{1-x+2x}{1-x}$ $S = \frac{1+x}{\left(1-x\right)^2}$ $S = 1 + \frac{2}{3} + \frac{6}{2^2} + \frac{10}{2^3} + \frac{14}{2^4} + \dots \text{ to } \infty$ 60. $(S^{*}-1) = \frac{2}{3} + \frac{6}{2^{2}} + \frac{10}{2^{3}} + \frac{14}{2^{4}} + \dots \text{ to } \infty$ $(S-1) \times \frac{1}{3} = \frac{2}{2^2} + \frac{6}{2^3} + \frac{10}{2^4} + \dots \text{ to } \infty$ Subtracting. $\frac{2}{3}(S-1) = \frac{2}{3} + \frac{4}{2^2} + \frac{4}{2^3} + \frac{4}{2^4} + \dots \text{ to } \infty$ $=\frac{2}{3}+\frac{\overline{3^2}}{1-\frac{1}{1-\frac{1}{2}}}$ è. 68. $\Rightarrow \frac{2}{3}(S-1) = \frac{2}{3} + \frac{2}{3}$ S = 3= 3410

61. $\sum_{r=1}^{n} (2r+5) = 2 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 5 = \frac{2(n)(n+1)}{2} + 5n$ = n(n + 6)Sum of given series = $y + \frac{y^2}{2} + \frac{y^3}{2} + \dots$, where $y = x^2$. Sum of given series = $-\log(1-y)$ $= -\log_{e}(1 - x^{2})$ 63. $1^3 + 2^3 + 3^3 + \dots + 25^3 = \sum_{r=1}^{25} r^3$ $=\frac{(25)^2(25+1)^2}{4}$ = 105625 $(31)^{2} + (32)^{2} + (33)^{2} + \dots + (60)^{2}$ = [(1)² + (2)² + (3)² + \dots + (60)²] $-[(1)^2 + (2)^2 + (3)^2 + \dots + (30)^2]$ $=\sum_{n=1}^{60}r^2-\sum_{n=1}^{50}r^2$ $\frac{(2^2 - 1^2) + (4^2 - 3^2) + (6^2 - 5^2) + \dots}{= (2^2 + 4^2 + 6^2 + \dots) - (1^2 + 3^2 + 5^2 + \dots)}$ $=\sum_{n=1}^{n} (2r)^{2} - \sum_{n=1}^{n} (2r-1)^{2} = \sum_{n=1}^{n} 4r - \sum_{n=1}^{n} 1$ $=4\left|\frac{n(n+1)}{2}\right|-n$ = n(2n + 1)66. $\log_e 3 - \frac{\log_e 3^2}{2^2} + \frac{\log_3 3^3}{2^2} - \frac{\log_e 3^4}{4^2} + \dots$ $= \log_{c} 3 \left\{ 1 - \frac{2}{2^{2}} + \frac{3}{2^{2}} - \frac{4}{4^{2}} + \ldots \right\}$ $= \log_{c} 3 \left\{ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \right\}$ $= \log_e 3 \log_e (1+1)$ $= \log_e 3 \log_e 2$ 67. $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ $=\log_{e}\left(1+x\right)$ $1 + x = e^{y} \Rightarrow x = e^{y} - 1$ $2(1)^{2} + 3(2)^{2} + 4(3)^{2} + \dots$ up to 10 terms $=\sum_{r=1}^{10} (r+1)r^2 = \sum_{r=1}^{10} r^3 + \sum_{r=1}^{10} r^2$

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

4. First term = a, d = b - a and last term = c
If the no. of terms is n, then

$$t_n = c = a + (n-1)(b-a) \Rightarrow \frac{c-a}{b-a} = n-1$$

Solving, $n = \frac{b+c-2a}{b-a}$
5. a, b, c are in A.P.
 $\Rightarrow b - a = c - b \Rightarrow \frac{b-a}{c-b} = 1$
6. If D is the common difference of the A.P.
a, b, c, d, e, then b = a + D, c = a + 2D,
d = a + 3D, e = a + 4D
 \therefore a - 4b + 6c - 4d + e
 $= a - 4(a + D) + 6(a + 2D)$
 $-4(a + 3D) + a + 4D = 0$
7. Here a = S₁ = 6
S₇ = 105 $\Rightarrow \frac{7}{2} [2 \times 6 + (7 - 1)d] = 105 \Rightarrow d = 3$
 \therefore S_n
 $\frac{S_n}{S_{n-3}} = \frac{\frac{n}{2} \{2 \times 6 + (n-1)3\}}{\frac{(n-3)}{2} \{2 \times 6 + (n-4)3\}} = \frac{n+3}{n-3}$
8. $d = \frac{1}{3} - \frac{1}{2} = \frac{-1}{6}$
 \therefore S₉ = $\frac{9}{2} \{2 \times \frac{1}{2} + (9 - 1)(\frac{-1}{6})\} = -\frac{3}{2}$
9. $d = b - a$ and if the number of terms is n, then
 $2a = a + (n-1)(b - a)$
 $\Rightarrow \frac{a}{b-a} + 1 = n \Rightarrow n = \frac{b}{b-a}$
10. Required sum = 10 + 13 + 16 + ... + 97
 $= \frac{n}{2} (10 + 97) (i)$
Here, 97 = 10 + (n - 1)3 $\Rightarrow n = 30$
 \therefore From (i), S_n = $\frac{30}{2} (10 + 97) = 1605$
11. $t_n = S_n - S_{n-1}$
 $= \{nP + \frac{n(n-1)}{2}Q\}$
 $= P + (n - 1)Q$

Common difference = $t_n - t_{n-1}$

= [P + (n-1)Q] - [P + (n-2)Q] = Q

69.
$$\frac{n(n+1)(2n+1)}{6} = 1015$$

∴ $n(n+1)(2n+1) = 6090$
⇒ $n(n+1)(2n+1) = 14 \times 15 \times 29$
⇒ $n = 14$

- 70. The first factors of the terms of the given series is 1, 2, 3, 4, ..., n and second factors of the terms of the given series is 2, 3, 4,(n + 1)
- :. n^{th} term of the given series = $n(n + 1) = n^2 + n$ Hence, sum =

$$\Sigma n^{2} + \Sigma n = \frac{1}{6}n(n+1)(2n+1) + \frac{n}{2}(n+1)$$
$$= \frac{1}{6}n(n+1)(2n+1+3)$$
$$= \frac{1}{3}n(n+1)(n+2)$$

Critical Thinking

- 1. Given sequence is in A.P. \therefore a = 8 - 6i, d = -1 + 2i
- $\therefore \quad t_n = a + (n-1)d = (9-n) + i(2n-8)$ For purely imaginary term, 9 - n = 0 $\Rightarrow n = 9$

2.
$$\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}, \dots$$

i.e.,
$$\frac{1-\sqrt{x}}{1-x}, \frac{1}{1-x}, \frac{1+\sqrt{x}}{1-x}, \dots$$
,
which is an A.P. with $d = \frac{\sqrt{x}}{1-x}$
 \therefore The fourth term = $t_3 + d = \frac{1+\sqrt{x}}{1-x} + \frac{\sqrt{x}}{1-x}$
 $= \frac{1+2\sqrt{x}}{1-x}$
3.
$$S_{2n} = 3S_n$$

 $\therefore \quad \frac{2n}{2}[2a + (2n-1)d] = \frac{3n}{2}[2a + (n-1)d]$

$$\frac{2}{3} = \frac{2}{2a} = (n+1)d$$

$$\frac{S_{3n}}{S_n} = \frac{\frac{3n}{2}[2a + (3n-1)d]}{\frac{n}{2}[2a + (n-1)d]} = 6$$

...

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

- 12. The smallest 3 digit no. divisible by 7 is 105 and greatest is 994.Given sequence is in A.P. with d = 7
- $\therefore \quad 994 = 105 + (n-1)7 \Rightarrow n = 128$
- $\therefore \quad S_n = \frac{n}{2} [2a + (n-1)d] \\ = \frac{128}{2} [2(105) + (128 1)7] = 70336$
- 13. Suppose work is completed in n days $\frac{n}{2} [2 \times 150 + (n-1)(-4)] = n(152 - 2n)$

Had no worker dropped from work, total no. of workers who would have worked all the n days is 150 (n - 8)

- $\therefore \quad n(152-2n) = 150(n-8) \Rightarrow n = 25$
- 14. l = a + (n 1)d and

$$S_n = \frac{n}{2} (a+l)$$

Eliminating a, we get

$$S_n = \frac{n}{2} \{l - (n-1)d + l\} = \frac{n}{2} \{2l - (n-1)d\}$$

- 15. d = -2, sum = -5 ∴ -5 = $\frac{5}{2}$ {2 a + 4(-2)} ⇒ a = 3 Hence, the actual sum (when d = 2) is $\frac{5}{2}$ {2×3+(5-1)×2} = $\frac{5}{2}$ (6+8) = 35
- 17. Given series 3.8 + 6.11 + 9.14 + 12.17 +First factors are 3, 6, 9, 12 whose nth term is 3n and second factors are 8, 11, 14, 17 $t_n = [8 + (n - 1)3] = (3n + 5)$ Hence nth term of given series = 3n(3n + 5).
- 18. Suppose that ∠A = x°, then ∠B = x + 10°, ∠C = x + 20° and ∠D = x + 30° So, we know that ∠A + ∠B + ∠C + ∠D = 2π Putting these values, we get (x°) + (x° + 10°) + (x° + 20°) + (x° + 30°) = 360° ⇒ x = 75° Hence, the angles of the quadrilateral are 75°, 85°, 95°, 105°.
 19. a, b, c, are in A.P ⇒ 2b = a + c
- Also, $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. $\Rightarrow \frac{2}{b} = \frac{1}{a} + \frac{1}{c}$ $\therefore \qquad \frac{2}{\frac{a+c}{2}} = \frac{a+c}{ac} \Rightarrow a = c \text{ and } b = a$

20. Let S_n and S'_n be the sum of *n* terms of two A.P.'s and t_{11} and t'_{11} be the respective 11^{th} terms, then

$$\frac{S_n}{S'_n} = \frac{\frac{n}{2}[2a + (n-1)d]}{\frac{n}{2}[2a' + (n-1)d']} = \frac{7n+1}{4n+27}$$

$$\Rightarrow \frac{a + \frac{(n-1)}{2}d}{a' + \frac{(n-1)}{2}d'} = \frac{7n+1}{4n+27}$$

Now put n = 21,
we get $\frac{a+10d}{a' + 10d'} = \frac{t_{11}}{t'_{11}} = \frac{148}{111} = \frac{4}{3}$

21. Required number n is the number of terms in the series 105 + 112 + 119 + + 994
∴ 994 = nth term of the above A.P.
∴ 994 = 105 + (n - 1) × 7
∴ n = ⁹⁹⁴⁻⁹⁸/₇

...

22. The given numbers are in A.P. 2 $\log_9 (3^{1-x} + 2) = \log_3 (4.3^x - 1) + 1$ $\Rightarrow 2 \log_{3^2} (3^{1-x} + 2) = \log_3 (4.3^x - 1) + \log_3 3$

$$\Rightarrow \frac{2}{2} \log_3 (3^{1-x} + 2) = \log_3[3(4.3^x - 1)]$$

$$\Rightarrow 3^{1-x} + 2 = 3(4.3^x - 1)$$

$$\Rightarrow \frac{3}{y} + 2 = 12y - 3, \text{ where } y = 3^x$$

$$\Rightarrow 12y^2 - 5y - 3 = 0$$

$$y = \frac{-1}{3} \text{ or } \frac{3}{4} \Rightarrow 3^x = \frac{-1}{3} \text{ or } 3^x = \frac{3}{4}$$

$$\therefore \qquad x = \log_3\left(\frac{3}{4}\right) \Longrightarrow x = 1 - \log_3 4$$

- 23. As we know $T_n = S_n S_{n-1}$ = $(2n^2 + 5n) - \{2(n-1)^2 + 5(n-1)\}$ = $2n^2 + 5n - 2n^2 + 4n - 2 - 5n + 5$ = 4n + 3
- 24. Here, $T_n = 3n 1$, putting n = 1, 2, 3, 4, 5 we get first five terms, 2, 5, 8, 11, 14 Hence, sum is 2 + 5 + 8 + 11 + 14 = 40.
- 25. According to the given condition $\frac{15}{2}[10 + 14 \times d] = 390 \implies d = 3$ Hence, middle term i.e., 8th term is given by $5 + 7 \times 3 = 26$

26.
$$\frac{a^{n+1} + b^{n+1}}{a^{n} + b^{n}} = \frac{a + b}{2}$$

$$\Rightarrow a^{n+1} - b^{n+1} - a^{n} = 0$$

$$\Rightarrow (a - b) (a^{n} - b^{n} = 0)$$
If $a^{n} - b^{n} = 0$. Then $\left(\frac{a}{b}\right)^{n} = 1 = \left(\frac{a}{b}\right)^{0}$
Hence, $n = 0$
27. The sum of n arithmetic mean between a and b $= \frac{n}{2}(a + b)$
28. The resulting progression will have $n + 2$ terms with 2 as the first term and 38 as the last terms. Therefore, the sum of the progression $= \frac{n + 2}{2}(2 + 38)$
29. As, $\log 2$, $\log(2^{n} - 1)$ and $\log(2^{n} + 3)$ are in A . P. Therefore, $2^{n} - 5 = 0$
 $\Rightarrow 2^{n} - 5 \text{ or } n - \log_2 5$
30. Let the three numbers be $a - d$, a , $a + d$
We get $a - d + a + a + d = 15$
 $\Rightarrow a^{n} 2 - (2^{n} - 1) \log_2 2 + \log(2^{n} + 3)$
 $2^{2^{n}} - 42^{n} - 5 = 0$
 $\Rightarrow 2^{n} - 5 \text{ or } n - \log_2 5$
30. Let the three numbers $b = a - d$, $a, a + d$
We get $a - d + a + a + d = 15$
 $\Rightarrow a^{n} 2 - (2^{n} + d^{n}) + a^{2} + (a + d^{2} + 2ad = 83)$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + (a^{n} + a^{2} + d^{2} + 2ad = 83)$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + (a^{n} + a^{n} + a^{n} + d^{n} + 2ad = 83)$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 33$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 5^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} - 2ad + a^{n} + a^{2} + d^{2} + 2ad = 83$
 $\Rightarrow 2(a^{n} - 2ad + a^{n} + a^{2} + d^{2} + 2ad = 83$
 $\Rightarrow 2(a^{n} - 2ad + a^{n} + a^{2} + d^{2} + 2ad = 83$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 5^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 33$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 5^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + d^{n}) + a^{2} + 3^{2} + 5^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} - 2ad + a^{n} + a^{2} + d^{2} + 2ad = 83$
 $\Rightarrow 2(a^{n} - 2ad + a^{n} + a^{2} + 3^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} + 4^{n}) + a^{n} + a^{2} + 6^{2} + 7^{2} = 83$
 $\Rightarrow 2(a^{n} +$

;

41.
$$t_{4} = 24$$
 and $t_{5} = 768$
 $\therefore t_{4} = a^{-3} \Rightarrow a^{-3} = 24$
and $t_{5} = ar^{8} \Rightarrow ar^{8} = 768$
Solving, $a = 3$ and $r = 2 > 1$
 $\therefore S_{10} = \frac{a[r^{10} - 1]}{r - 1} = \frac{3[2^{10} - 1]}{2 - 1} = 3(2^{10} - 1)$
42. $1 + (1 + x) + (1 + x + x^{2}) + ... + (1 + x + x^{2} + ... + x^{n-1})$
 $= \frac{1 - x}{1 - x} + \frac{1 - x^{2}}{1 - x} + \frac{1 - x^{3}}{1 - x} + ... + \frac{1 - x^{n}}{1 - x}$
 $= \frac{1}{1 - x} [(1 + 1 + ... n times)$
 $= \frac{1}{1 - x} [n - \frac{x(1 - x^{n})}{1 - x}]$
 $= \frac{n}{1 - x} - \frac{x(1 - x^{n})}{(1 - x)^{2}}$
43. $a + ar = -4$ and $ar^{4} = 4ar^{2} \Rightarrow r^{2} = 4 \Rightarrow r = \pm 2$
43. $a + ar = -4$ and $ar^{4} = 4ar^{2} \Rightarrow r^{2} = 4 \Rightarrow r = \pm 2$
44. Let the terms of given G.P. be $\frac{a}{r}$, a, ar
then product $= \frac{a}{r} \times a \times ar = 1000$
 $\frac{a}{r}$, $a + 6$, $ar + 7$ are in A.P.
 $\therefore 2(a + 6) = \frac{a}{r} + ar + 7$
 $\therefore 25 = \frac{10}{r} + 10 r$
 $\therefore 22^{2} - 5r + 2 = 0$
 $\therefore (2r - 1)(r - 2) = 0$
 $\therefore r = 2, \frac{1}{2}$
Hence, the G.P is 5, 10, 20, ... or 20, 10, 5....
45. $r = \frac{t_{x}}{t_{1}} = \frac{b}{a}$; last term = c
 $\Rightarrow ar^{n-1} = c \Rightarrow \frac{ar^{n}}{r} = c$.
 $\Rightarrow ar^{n} = cr$

$$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{a-ar^{n}}{1-r} = \frac{a-cr}{1-r} = \frac{a-c\left(\frac{b}{a}\right)}{1-\frac{b}{a}}$$
47. 2.3 $\overline{45} = 2.3 + 0.045 + 0.00045 +$

$$= \frac{23}{10} + \frac{45}{1000} + \frac{45}{100000} +$$
From 2nd term onwards, the terms are in G.P.
So $= \frac{a}{1-r} = \frac{\frac{45}{1000}}{1-\frac{1}{100}} = \frac{1}{22}$
 $\therefore 2.3\overline{45} = \frac{23}{10} + \frac{1}{22} = \frac{129}{55}$
Alternate Method:
2.3 $\overline{45} = 2 + \frac{345-3}{990} = 2 + \frac{342}{990} = \frac{129}{55}$
48. Let the G.P. be $a + ar + ar^{2} +, |r| < 1$,
then $ar = 2$ and $\frac{a}{1-r} = 8$
 $\Rightarrow r = \frac{1}{2}$ and $a = 4$
49. $\left(1-\frac{1}{2}\right) + \left(1-\frac{1}{4}\right) + \left(1-\frac{1}{8}\right) +$
 $\therefore S_{n} = n - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +upto n terms\right)$
 $= n - \frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{a}\right)}{1-\frac{1}{2}} = n - \left(1-\frac{1}{2^{a}}\right)$
 $= n - 1 + 2^{-n}$
50. $\frac{1}{7} + \frac{2}{7^{2}} + \frac{1}{7^{3}} + \frac{2}{7^{4}} +upto \infty$
 $= \left(\frac{1}{7} + \frac{1}{7^{5}} + \frac{1}{7^{5}} +\right) + 2\left(\frac{1}{7^{2}} + \frac{1}{7^{4}} + \frac{1}{7^{6}} +\right)$
 $= \frac{\frac{1}{7}}{1-\frac{1}{7^{2}}} + \frac{2\left(\frac{1}{7^{2}}\right)}{1-\frac{1}{7^{2}}} = \frac{3}{16}$

51.
$$A = 1 + r^{2} + r^{2z} + r^{3z} + \dots \infty$$

$$A = 1 + [r^{2} + r^{2z} + r^{2z} + \dots \infty]$$
We know that sum of infinite G.P. is
$$S_{\infty} = \frac{a}{1-r}(-1 < r < 1)$$
Therefore, $A = 1 + \left[\frac{r^{2}}{1-r^{2}}\right]$

$$\Rightarrow A = \frac{1-r^{2} + r^{2}}{1-r^{2}} \Rightarrow A = \frac{1}{1-r^{2}}$$

$$\Rightarrow 1 - r^{2} = \frac{1}{A} \Rightarrow r^{2} = \frac{A-1}{A}$$
Hence, $r = \left[\frac{A-1}{A}\right]^{\frac{1}{2}}$
52.
$$G.M = b = \sqrt{ac}$$

$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{\sqrt{ac}-a} + \frac{1}{\sqrt{ac}-c}$$

$$= \frac{1}{\sqrt{a}\left[\sqrt{c}-\sqrt{a}\right]} + \frac{1}{\sqrt{c}\left[\sqrt{a}-\sqrt{c}\right]} = \frac{1}{\sqrt{ac}} = \frac{1}{b}$$
53. $a, g_{1}, g_{2}, b \text{ are in G.P.} \Rightarrow \frac{g_{1}}{a} = \frac{g_{2}}{g_{1}} = \frac{b}{g_{2}}$

$$\therefore \qquad \frac{g_{1}}{a} = \frac{g_{2}}{g_{1}} \text{ and } \frac{g_{2}}{g_{1}} = \frac{b}{g_{2}} \Rightarrow a = \frac{g_{1}^{2}}{g_{2}} \text{ and } b = \frac{g_{2}^{2}}{g_{1}}$$
54. Let $AR^{p-1} = a$,
 $AR^{r-1} = b$,
 $AR^{r-1} = c$
So
 $a^{4r} b^{r-p} c^{p-q} = (AR^{p-1})^{q-r} (AR^{q-1})^{r-p} (AR^{r-1})^{p-q}$
 $= A^{0}R^{0} = 1$
55. We have, $x = \sum_{n=0}^{\infty} a^{n} = \frac{1}{1-a} \Rightarrow a = \frac{x-1}{x}$
 $y = \sum_{n=0}^{\infty} b^{n} = \frac{1}{1-b} \Rightarrow b = \frac{y-1}{y}$
 $z = \sum_{n=0}^{\infty} a^{n} b^{n} = \frac{1}{1-ab} \Rightarrow ab = \frac{z-1}{z}$
 $\therefore \qquad \frac{x-1}{x} \cdot \frac{y-1}{y} = \frac{z-1}{z}$

56. $\frac{S_3}{S_c - S_2} = \frac{125}{27} \Rightarrow \frac{S_3}{S_c} = \frac{125}{152}$ $\therefore \quad \frac{a(1-r^3)}{a(1-r^6)} = \frac{125}{152} \implies \frac{1}{1+r^3} = \frac{125}{152}$ \Rightarrow r³ = $\frac{27}{125}$ \Rightarrow r = $\frac{3}{5}$ 57. Let the 9 terms of a G.P. be $\frac{a}{r^4}, \frac{a}{r^3}, \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2, ar^3, ar^4$ Given, fifth term a = 2Hence, product of 9 terms is $a^9 = (2)^9 = 512$ Given that $\frac{a(r^n - 1)}{r - 1} = 255$ (:: r > 1)(i) 58. $ar^{n-1} = 128$(ii) and common ratio r = 2....(iii) From (i), (ii) and (iii), we get $a(2)^{n-1} = 128$(iv) and $\frac{a(2^n-1)}{2} = 255$(v) Dividing (v) by (iv), we get $\frac{2^{n}-1}{2^{n-1}} = \frac{255}{128}$ $\Rightarrow 2 - 2^{-n+1} = \frac{255}{128}$ $\Rightarrow 2^{-n} = 2^{-8}$ \Rightarrow n = 8 Putting n = 8 in equation (iv), we get $a \cdot 2^7 = 128 = 2^7$ or a = 159. We have $1 + a + a^{2} + \dots + a^{x} = (1 + a)(1 + a^{2})(1 + a^{4})$ $\Rightarrow \frac{(1-a^{x+1})}{(1-a)} = (1+a)(1+a^2) + (1+a^4)$ $\Rightarrow (1 - a^{x+1}) = (1 - a)(1 + a)(1 + a^2)(1 + a^4)$ $\Rightarrow (1-a^{x+1}) = (1-a^8)$ $\Rightarrow x + 1 = 8$ $\Rightarrow x = 7$ $a_1 = 3, a_n = 96$ 60. $\Rightarrow a_1 r^{n-1} = 96$ \Rightarrow rⁿ⁻¹ = 32 Now, $S_n = \frac{a_1(r^n - 1)}{r - 1} = 189$ $\Rightarrow \frac{3(32r-1)}{r-1} = 189$

40

Hence, r = 2 and n = 6

61.
$$a = 7 \text{ and } ar^{n-1} = 448$$

Now, $S_n = \frac{a(r^n - 1)}{r-1} = 889$
 $\Rightarrow \frac{(ar^{n-1}r-a)}{r-1} = 889 \Rightarrow \frac{448r-7}{r-1} = 889$
 $\Rightarrow r = 2$
62. As given, $G = \sqrt{xy}$
 $\therefore \frac{1}{G^2 - x^2} + \frac{1}{G^2 - y^2} = \frac{1}{xy - x^2} + \frac{1}{xy - y^2}$
 $= \frac{1}{x - y} \left\{ -\frac{1}{x} + \frac{1}{y} \right\} = \frac{1}{xg} = \frac{1}{G^2}$
63. $a = 3, r = 3$
 $G.M. = (3.3^2.3^3.......3^n)^{1/n}$
 $= (3^{1/2^{1/3} + 1/9 + 1/2^7.....0^n)}$
 $\therefore S = 4^{1/2} + \frac{1}{(1-1)^3} = 4^{\frac{1/2}{2}}$
 $\Rightarrow S = 4^{1/2}$
 $\Rightarrow S = 4^{1/2}$
 $\Rightarrow S = 4^{1/2}$
 $\Rightarrow S = 2$
65. Infinite series $9 - 3 + 1 - \frac{1}{3} + \dots$ is a
 $G.P.$ with $a = 9, r = -\frac{1}{3}$
 $\therefore S_n = \frac{a}{1 - r} = \frac{9}{1 + \left(\frac{1}{3}\right)} = \frac{9 \times 3}{4} = \frac{27}{4}$
66. $5 = \frac{x}{1 - r} \Rightarrow 5 - 5r = x \Rightarrow r = 1 - \frac{x}{5}$
As $|r| < 1$ i.e., $\left| 1 - \frac{x}{5} \right| < 1$
 $\therefore -1 < 1 - \frac{x}{5} < 1$
 $\therefore -1 < 1 - \frac{x}{5} < 1$
 $\therefore -1 < 1 - \frac{x}{5} < 1$
 $\therefore -1 < 1 - x < 0$
 $\therefore 10 < x > 0$
 $\therefore 0 < x < 10$
67. a, b, c are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
 $\therefore \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} \Rightarrow \frac{a - b}{b - c} = \frac{a}{c}$
70. H²
70. H²
70. H²
70. H²
71. 7th
71. 7th
72. HJ

 $=\frac{2ab}{a+b} \Rightarrow \frac{c}{a} = \frac{2b}{a+b}$ and $\frac{c}{b} = \frac{2a}{a+b}$ $+\frac{c}{b}=\frac{2b}{a+b}+\frac{2a}{a+b}=2$ $=\frac{2ab}{a+b}$ $H-a=\frac{2ab}{a+b}-a=\frac{ab-a^2}{a+b}$ $dH - b = \frac{2ab}{a+b} - b = \frac{ab - b^2}{a+b}$ $\frac{1}{1-a} + \frac{1}{1-b} = \frac{a+b}{ab-a^2} + \frac{a+b}{ab-b^2}$ $=\frac{(a+b)}{(b-a)}\left[\frac{(b-a)}{ab}\right]$ $=\frac{1}{a}+\frac{1}{b}$ $=\frac{2ab}{a+b} \Rightarrow \frac{H}{a} = \frac{2b}{a+b}$ $\frac{+a}{-a} = \frac{3b+a}{b-a}$ milarly, $\frac{H+b}{H-b} = \frac{3a+b}{a-b} = -\frac{3a+b}{b-a}$ $\frac{+a}{-a} + \frac{H+b}{H-b} = \frac{2b-2a}{b-a} = 2$ term of corresponding A.P. is $\frac{1}{8}$ and 8^{th} m will be $\frac{1}{7}$ $a + 6d = \frac{1}{8}$ and $a + 7d = \frac{1}{7}$ lying these, we get $d = \frac{1}{56}$ and $a = \frac{1}{56}$ erefore, 15th term of this A.P. $\frac{1}{56} + 14 \times \frac{1}{56} = \frac{15}{56}$ ence, the required 15th term of the H.P. is $\mathbf{M} = \frac{2\left(\frac{\mathbf{a}^2}{1-\mathbf{a}^2\mathbf{b}^2}\right)}{\mathbf{a} \mathbf{b} \mathbf{a}} = \frac{2\mathbf{a}^2}{2\mathbf{a}} = \mathbf{a}$

73. a, b, c are in H.P.

$$\therefore b = \frac{2ac}{a+c}$$
Also b, c, d are in H.P. $\Rightarrow c = \frac{2bd}{b+d}$
Multiplying we get, $bc = \frac{4abcd}{(a+c)(b+d)}$
 $\therefore ab + bc + cd + ad = 4ad
 $\Rightarrow ab + bc + cd = 3ad$
74. Let the numbers be a and b, then
 $4 = \frac{2ab}{a+b} \Rightarrow a + b = \frac{ab}{2}$
 $A = \frac{a+b}{2}$ and $G = \sqrt{ab}$
Also, $2A + G^2 = 27$
 $\therefore a + b + ab = 27 \Rightarrow \frac{ab}{2} + ab = 27 \Rightarrow ab = 18$
and hence $a + b = 9$.
Only option A satisfies this condition.
75. Suppose that x to be added then numbers 13, 15, 19 s othat new numbers $x + 13$, $15 + x$, $19 + x$
will be in H.P.
 $\Rightarrow (15 + x) = \frac{2(x+13)(19 + x)}{x+13 + x + 19}$
 $\Rightarrow x^2 + 31x + 240 = x^2 + 32x + 247$
 $\Rightarrow x = -7$
76. Let a be the first term and d be the common
difference of the corresponding A.P.
 p^{th} term of A.P. $(T_q) = a + (q-1)d$
 $= \frac{1}{q}$ (i)
 q^{th} term of A.P. $(T_q) = a + (q-1)d$
 $= \frac{1}{q}$ (ii)
From (i) – (ii), $(p-q)d = \frac{1}{q} - \frac{1}{p} = \frac{p-q}{pq}$
 $\Rightarrow d = \frac{1}{pq}$
From (i),
 $a + (p-1)\frac{1}{pq} = \frac{1}{q} \Rightarrow a = \frac{1}{pq}$
 $\therefore T_{pq} = a + (pq-1)d$.
 $= \frac{1}{pq} + (pq-1)\frac{1}{pq} = 1$
Therefore noth term is 1.$

77. Here, $\frac{\log x}{\log a}$, $\frac{\log x}{\log b}$, $\frac{\log x}{\log c}$ are in H.P. $\Rightarrow \frac{\log a}{\log x}, \frac{\log b}{\log x}, \frac{\log c}{\log x}$ are in A.P. $\Rightarrow \log_x a, \log_x b, \log_x c \text{ are in A.P.}$ \Rightarrow a, b, c are in G.P. We know that A > G > H78. Where A is arithmetic mean, G is geometric mean and H is harmonic mean, then A > G $\Rightarrow \frac{a+b}{2} > \sqrt{ab}$ or $(a+b) > 2\sqrt{ab}$ 79. Clearly, $x = \frac{1}{1-a}$, $y = \frac{1}{1-b}$, $z = \frac{1}{1-c}$ Since a, b, c are in A.P. \Rightarrow 1 - a, 1 - b, 1 - c are also in A.P. $\Rightarrow \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P. x, v, z are in H.P. ... 80. As given, $2b = a + c \Rightarrow 3^{2b} = 3^{a+c}$ or $(3^b)^2 = 3^a \cdot 3^c$ i.e $3^a \cdot 3^b \cdot 3^c$ are in G.P. 81. Given that $\frac{\text{H.M.}}{\text{GM}} = \frac{12}{13}$ $\Rightarrow \frac{\overline{a+b}}{\sqrt{ab}} = \frac{12}{13} \text{ or } \frac{a+b}{2\sqrt{ab}} = \frac{13}{12}$ $\Rightarrow \frac{(a+b)+2\sqrt{ab}}{(a+b)-2\sqrt{ab}} = \frac{13+12}{13-12} = \frac{25}{1}$ $\Rightarrow \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{5}{1}$ $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} + \sqrt{b}) - (\sqrt{a} - \sqrt{b})} = \frac{5+1}{5-1}$ $\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{6}{4}$ $\Rightarrow \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{n^2} = \frac{6}{4}$ \Rightarrow a : b = 9 : 4 82. Given that $\frac{a}{b} = \frac{9}{1}$ or a = 9bHere, $H = \frac{2ab}{a+b}$ and $G = \sqrt{ab}$ $\Rightarrow H:G = \frac{2ab}{a+b}: \sqrt{ab} = \frac{2.9b^2}{10b}: 3b = \frac{3}{5}$

42

Hence, G: H = 5:3

4 × 41

.

43

94. Let
$$t_n = \frac{1}{(n+1)!}$$

 $S_n = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$
 $= \left[1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots\right] - \left[1 + \frac{1}{1!}\right]$
 $= e - (1 + 1) \cdot$
 $= e - 2$
95. $t_r = \frac{1^3 + 2^3 + \dots + r^3}{(r+1)^2} = \frac{r^2}{4}$
 $\therefore S_n = \sum_{r=1}^{n} t_r = \sum_{r=1}^{n} \frac{r^2}{4} = \frac{1}{4} \sum_{r=1}^{n} r^2$
 $= \frac{1 \cdot n(n+1)(2n+1)}{24}$
96. $1^3 + 3^3 + 5^3 + \dots + 21^3$
 $= (1^3 + 2^3 + 3^3 + 4^3 + \dots + 21^3)$
 $= (1^3 + 2^3 + 3^3 + 4^3 + \dots + 21^3)$
 $= (2^3 + 4^3 + 6^3 + \dots + 20^3)$
 $= \sum_{r=1}^{21} r^3 - 8 \sum_{r=1}^{n} r^3$
 $= \frac{(21)^2 (21 + 1)^2}{4} - \frac{8 \times 10^2 (10 + 1)^2}{4}$
 $= 29161$
97. $t_r = \frac{1 + 2 + 3 + \dots + r}{r} = \frac{r(r+1)}{2} = \frac{r+1}{2}$
 $\therefore S_n = \sum_{r=1}^{n} t_r = \sum_{r=1}^{n} \frac{r+1}{2} = \frac{1}{2} \left[\sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 \right]$
 $= \frac{1}{2} \left[\frac{n(n+1)}{2} + n \right]$
 $= \frac{1}{4} (n^2 + 3n)$
 $= \frac{n(n+3)}{4}$
98. Given ratio $= \frac{\frac{1}{2} \left(e + \frac{1}{e}\right) - 1}{\frac{1}{2} \left(e - \frac{1}{e}\right)} = \frac{(e-1)^2}{(e-1)(e+1)}$
 $= \frac{e-1}{e+1}$

99. We have
$$\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$$

= $1\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \dots$
= $\sqrt{2} [1 + 2 + 3 + 4 + \dots$ upto 24 terms]
= $\sqrt{2} \times \frac{24 \times 25}{2}$
= $300\sqrt{2}$

- 100. Let $S = 2 + 4 + 7 + 11 + 16 + \dots + t_n$ $S = 2 + 4 + 7 + 11 + 16 + \dots + t_n + t_n$ Subtracting, we get $0 = 2 + \{2 + 3 + 4 + \dots + (t_n - t_{n-1})\} - t_n$ $\Rightarrow t_n = 1 + \{1 + 2 + 3 + 4 + \dots + (t_n - t_{n-1})\} - t_n$ $\Rightarrow t_n = 1 + \{1 + 2 + 3 + 4 + \dots + (t_n - t_{n-1})\} - t_n$ $\Rightarrow t_n = 1 + \frac{1}{2}n(n+1)$ $= \frac{2 + n^2 + n}{2} = \frac{n^2 + n + 2}{2}$
- 101. Let $S = i 2 3i + 4 + 5i + \dots + 100i^{100}$ $\Rightarrow S = i + 2i^2 + 3i^3 + 4i^4 + 5i^5 + \dots + 100i^{100}$ $\Rightarrow iS = i^2 + 2i^3 + 3i^4 + 4i^5 + \dots + 99i^{100} + 100i^{101}$

$$S - iS = [i + i^{2} + i^{3} + i^{4} + \dots + i^{100}] - 100i^{101}$$

$$\Rightarrow S(1 - i) = 0 - 100i^{101} = -100 i$$

$$S = \frac{-100i}{1 - i} = -50i(1 + i) = -50(i - 1)$$

$$= 50(1 - i)$$

102. Here,
$$T_r = \frac{1}{r(r+1)}$$
, $r = 1, 2, ..., n$
 $\Rightarrow T_r = \frac{1}{r} - \frac{1}{r+1}$
 \therefore Required sum $= \sum_{r=1}^{n} T_r$
 $= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$
 $= 1 - \frac{1}{n+1} = \frac{n}{n+1}$
103. $\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots$

which is the expansion of e^{-1} 104. $e^{-x} = (1-x) + \frac{x^2}{2!} \left(1 - \frac{x}{3}\right) + \frac{x^4}{4!} \left(1 - \frac{x}{5}\right) + \dots$ $\therefore e^{-1} = (1-1) + \frac{1}{2!} \left(1 - \frac{1}{3}\right) + \frac{1}{4!} \left(1 - \frac{1}{5}\right) + \dots$ $= \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots$

$$105. \quad \Sigma n^{2} = 330 + \Sigma n$$

$$\Rightarrow \frac{n(n+1)(2n+1)}{6} = 330 + \frac{n(n+1)}{2}$$

$$\Rightarrow \frac{n(n+1)}{2} \left[\frac{2n+1}{3} - 1 \right] = 330$$

$$\Rightarrow \frac{n(n+1)}{2} \cdot \frac{2(n-1)}{3} = 330$$

$$\Rightarrow n(n+1)(n-1) = 990$$

$$\Rightarrow n = 10$$

$$106. \quad T_{n} = \frac{3^{n} - 1}{3^{n}} = 1 - \left(\frac{1}{3}\right)^{n}$$

$$S_{n} = n - \sum_{n=1}^{n} \left(\frac{1}{3}\right)^{n} = n - \frac{\frac{1}{3}\left[1 - \left(\frac{1}{3}\right)^{n}\right]}{\left(1 - \frac{1}{3}\right)}$$

$$l = n - \frac{1}{2}(1 - 3^{-n})$$

$$= n + \frac{1}{2}(3^{-n} - 1)$$

$$107. \quad \sum_{n=1}^{20} (n^{3}) - \sum_{n=1}^{10} (n^{3}) = \left[\frac{n(n+1)}{2}\right]_{n-20}^{2} - \left[\frac{n(n+1)}{2}\right]_{n-10}^{2}$$

$$\Rightarrow \left[\frac{20 \times 21}{2}\right]^{2} - \left[\frac{10 \times 11}{2}\right]^{2}$$

$$= 44100 - 3025$$

$$= 41075$$

$$108. \quad \text{The series is}$$

$$\frac{2}{1} + \frac{(2 + 5)}{2!} + \frac{(2 + 5 + 8)}{3!} + \frac{(2 + 5 + 8 + 11)}{4!} + \dots$$

$$\text{Hence, } T_{n} = \frac{n(3n+1)}{2(n)!}$$

$$109. \quad \text{Here } T_{n} = \frac{1^{3} + 2^{3} + 3^{3} + \dots + n^{3}}{1 + 3 + 5 + \dots \text{ upt on terms}}$$

$$= \frac{\Sigma n^{3}}{n!} \left[\frac{1}{2}(2 + (n-1)2)\right] = \frac{1}{4} \frac{n^{2}(n+1)^{2}}{n^{2}}$$

$$= \frac{1}{2}(n^{2} + 2n + 1)$$

Competitive Thinking

P	Competitive Thinking
1.	Given that, $t_p = a + (p - 1)d = q$ (i) and $t_q = a + (q - 1)d = p$ (ii) From (i) and (ii), we get $d = -\frac{(p - q)}{(p - q)} = -1$
	Putting the value of d in equation (i), we get a = p + q - 1 $t_r = a + (r - 1)d = (p + q - 1) + (r - 1)(-1)$ = p + q - r
2.	We have, $\tan n\theta = \tan m\theta$ $\Rightarrow n \theta = N\pi + (m\theta)$
	$\Rightarrow \theta = \frac{N\pi}{n-m}, \text{ putting } N = 1,2,3, \text{ we get}$ $\frac{\pi}{n-m}, \frac{2\pi}{n-m}, \frac{3\pi}{n-m}, \dots, \text{ which are in A.P.}$
	Since, common difference, $d = \frac{\pi}{n-m}$.
3. GT	Given series $63 + 65 + 67 + 69 + \dots$ (i) and $3 + 10 + 17 + 24 + \dots$ (ii) Now from (i), m th term = $(2m + 61)$ and m th term of (ii) series = $(7m - 4)$ According to the given condition,
	7m - 4 = 2m + 61 $\Rightarrow 5m = 65 \Rightarrow m = 13$
4.	Given series $27 + 9 + 5\frac{2}{5} + 3\frac{6}{7} + \dots$ = $27 + \frac{27}{3} + \frac{27}{5} + \frac{27}{7} + \dots + \frac{27}{2n-1} + \dots$
2 2 5	Hence, n th term of given series $t_n = \frac{27}{2n-1}$
°ж	So, t ₉ = $\frac{27}{2 \times 9 - 1} = \frac{27}{17} = 1\frac{10}{17}$
5.	If a, b, c are in A.P., then $2b = a + c$ So, $\frac{(a-c)^2}{(b^2-ac)} = \frac{(a-c)^2}{\left\{ \left(\frac{a+c}{2}\right)^2 - ac \right\}}$
	$=\frac{4(a-c)^{2}}{[a^{2}+c^{2}+2ac-4ac]}$
á	$=\frac{4(a-c)^2}{(a-c)^2}=4$
	Trick: Put $a = 1$, $b = 2$, $c = 3$, then the required value is $\frac{4}{2} = 4^{-1}$
	required value is $\frac{4}{1} = 4$,

6.
$$\log_{3}2$$
, $\log_{3}(2^{x} - 5)$ and $\log_{3}\left(2^{x} - \frac{7}{2}\right)$ are in
A.P.
⇒ $2\log_{3}(2^{x} - 5) = \log_{5}\left[(2)\left(2^{x} - \frac{7}{2}\right)\right]$
⇒ $(2^{x} - 5)^{2} = 2^{x+1} - 7$
⇒ $2^{2x} - 12.2^{x} + 32 = 0$
⇒ $x = 2,3$
But $x = 2$ does not hold, hence $x = 3$
7. Required ratio is $\frac{44}{99} = \frac{4}{9}$
8. According to the given condition,
 $p \{a+(p-1)d\} = q \{a+(q-1)d\}$
⇒ $a(p-q) + (p^{2} - q^{2})d + (q-p)d = 0$
⇒ $(p-q) \{a+(p+q-1)d\} = 0$
⇒ $a+(p+q-1)d=0$ [$\because p \neq q$]
⇒ $t_{p+q} = 0$
9. We have $\frac{S_{n_{1}}}{S_{n_{2}}} = \frac{2n+3}{6n+5}$
 $\Rightarrow \frac{2\left[2a_{1} + \left(\frac{n-1}{2}\right)d_{1}\right]}{2\left[a_{2} + \left(\frac{n-1}{2}\right)d_{2}\right]} = \frac{2n+3}{6n+5}$
 $\Rightarrow \frac{a_{1} + \left(\frac{n-1}{2}\right)d_{1}}{a_{2} + \left(\frac{n-1}{2}\right)d_{2}} = \frac{2n+3}{6n+5}$
Put $n = 25$ then $\frac{a_{1} + 12d_{1}}{a_{2} + 12d_{2}} = \frac{2(25)+3}{6(25)+5}$
 $\Rightarrow \frac{t_{13}}{t_{132}} = \frac{53}{155}$
10. $t_{m} = a + (m-1)d = \frac{1}{m}$ and $t_{n} = a + (m-1)d = \frac{1}{m}$ and $d = \frac{1}{mn}$
 $\therefore t_{mn} = a + (mn - 1)d = \frac{1}{mn} + (mn - 1)\frac{1}{mn} = 1$

11. Series, $2 + 5 + 8 + 11 + \dots$ a = 2, d = 3 and let number of terms be n, then sum of A.P. = $\frac{n}{2} \{2a + (n-1)d\}$ $\Rightarrow 60100 = \frac{n}{2} \{2 \times 2 + (n-1)3\}$ \Rightarrow 120200 = n(3n + 1) $\Rightarrow 3n^2 + n - 120200 = 0$ \Rightarrow (n - 200)(3n + 601) = 0 Hence, n = 200The series of all natural numbers is 12. 3, 6, 9, 12, 99 Here $n = \frac{99}{3} = 33$, a = 3, d = 3 $S_{33} = \frac{33}{2} \{2 \times 3 + (33 - 1)3\}$ $=\frac{33}{2} \times 102$ $= 33 \times 51$ = 1683Acording to the given condition, $\frac{n}{2} \{2a + (n-1)d\} = \frac{m}{2} \{2a + (m-1)d\}$ $\Rightarrow 2a(m-n) + d(m^2 - m - n^2 + n) = 0$ $\Rightarrow (\mathbf{m} - \mathbf{n}) \{ 2\mathbf{a} + \mathbf{d}(\mathbf{m} + \mathbf{n} - 1) \} = 0$ $\Rightarrow 2a + (m + n - 1)d = 0 \dots [\because m \neq n]$ $S_{m+n} = \frac{m+n}{2} \{2a + (m+n-1)d\}$ $=\frac{\mathbf{m}+\mathbf{n}}{2}\left\{0\right\}$ = 0As given $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$ 14. Where d is the common difference of the given A.P. Also $a_n = a_1 + (n-1)d$ Then by rationalising each term.

$$\frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}}$$

= $\frac{\sqrt{a_2} - \sqrt{a_1}}{a_2 - a_1} + \frac{\sqrt{a_3} - \sqrt{a_2}}{a_3 - a_2} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}}$
= $\frac{1}{d} (\sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_n} - \sqrt{a_{n-1}})$

$$= \frac{1}{d} \left(\sqrt{a_{n}} - \sqrt{a_{1}} \right) = \frac{1}{d} \left(\frac{a_{n} - a_{1}}{\sqrt{a_{n}} + \sqrt{a_{1}}} \right)$$
$$= \frac{1}{d} \left\{ \frac{(n-1)d}{\sqrt{a_{n}} + \sqrt{a_{1}}} \right\} = \frac{n-1}{\sqrt{a_{n}} + \sqrt{a_{1}}}$$

Given that $S_n = nA + n^2B$ 15. Putting n = 1, 2, 3, we get $S_1 = A + B$, $S_2 = 2A + 4B$, $S_3 = 3A + 9B$

...... Therefore, $T_1 = S_1 = A + B_1$ $T_2 = S_2 - S_1 = A + 3B$, $T_3 = S_3 - S_2 = A + 5B_1$

.....

.....

Hence, the sequence is (A + B), (A + 3B), (A + 5B)....Here, a = A + B and common difference d = 2B

- 16. It is not possible to express a + b + 4c - 4d + ein terms of a.
- 17. Let the number of sides of the polygon be n. Then the sum of interior angles of the polygon

$$=(2n-4)\frac{\pi}{2}=(n-2)\pi$$

Since, the angles are in A.P.and $a = 120^{\circ}, d = 5$ therefore,

 $[2 \times 120 + (n-1)5] = (n-2)180$ \Rightarrow n² - 25n + 144 = 0 \Rightarrow (n'-9) (n-16) = 0 \Rightarrow n = 9, 16 But n = 16 gives, $T_{16} = a + 15d$ $= 120^{\circ} + 15.5^{\circ}$

= 195° which is impossible, as interior be greater than angle cannot 180°. Hence, n = 9.

18. As given $d = a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1}$ $\sin d \{ \operatorname{cosec} a_1 \operatorname{cosec} a_2 + \dots + \operatorname{cosec} a_{n-1} \}$... $cosec a_n$ $=\frac{\sin(a_{2}-a_{1})}{\sin a_{1}.\sin a_{2}}+\ldots+\frac{\sin(a_{n}-a_{n-1})}{\sin a_{n-1}\sin a_{n}}$ $= (\cot a_1 - \cot a_2) + (\cot a_2 - \cot a_3) + \dots +$ $(\cot a_{n-1} - \cot a_n)$ $= \cot a_1 - \cot a_n$

19. $a_1, a_2, a_3, \ldots, a_{n+1}$ are in A.P. and common

difference = d
Let
$$S = \frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \dots + \frac{1}{a_na_{n+1}}$$

 $\Rightarrow S = \frac{1}{d} \left\{ \frac{d}{a_1a_2} + \frac{d}{a_2a_3} + \dots + \frac{d}{a_na_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{a_2 - a_1}{a_1a_2} + \frac{a_3 - a_2}{a_2a_3} + \dots + \frac{a_{n+1} - a_n}{a_n a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_2} - \frac{1}{a_3} + \dots + \frac{1}{a_n} - \frac{1}{a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_{n+1}} \right\} = \frac{1}{d} \left\{ \frac{a_{n+1} - a_1}{a_1a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_{n+1}} \right\} = \frac{1}{d} \left\{ \frac{a_{n+1} - a_1}{a_1a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{nd}{a_1a_{n+1}} \right\} = \frac{1}{a_1a_{n+1}}$
Trick: Check for n = 2.
20. $164 = (3m^2 + 5m) - \{3(m - 1)^2 + 5(m - 1)\}$
 $= (3m^2 + 5m) - 3m^2 + 6m - 3 - 5m + 5$
 $\Rightarrow 164 = 6m + 2 \Rightarrow m = 27$
21. $2\tan^{-1}y = \tan^{-1}x + \tan^{-1}z$
 $\Rightarrow \tan^{-1}\left(\frac{2y}{1 - y^2}\right) = \tan^{-1}\left(\frac{x + z}{1 - xz}\right)$
 $\Rightarrow \frac{2y}{1 - y^2} = \frac{x + z}{1 - xz}$
But $2y = x + z$ [$\because x, y, z$ are in A.P.]
 $\therefore 1 - y^2 = 1 - xz$
 $\Rightarrow y^2 = xz$
 $\therefore x, y, z$ are both in G.P. and A.P.,
 $\therefore x = y = z$
22. Let $a - d$, $a, a + d$ be the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$
Then, $(a - d) + a + (a + d) = 12$ and $(a - d)a(a + d) = 28$
 $\Rightarrow 3a = 12$ and $a(a^2 - d^2) = 28$
 $\Rightarrow a = 4$ and $a(a^2 - d^2) = 28$
 $\Rightarrow a = 4$ and $a(a^2 - d^2) = 28$
 $\Rightarrow a = 4$ and $a(a^2 - d^2) = 28$
 $\Rightarrow a = 4$ and $a(a^2 - d^2) = 28$
 $\Rightarrow 16 - d^2 = 7$
 $\Rightarrow d = \pm 3$
23. Let the first term be a and common difference

23 be d.

Given,
$$\frac{a_1 + a_2 + ... + a_p}{a_1 + a_2 + ... + a_q} = \frac{p^2}{q^2}$$

 $\Rightarrow \frac{pa + d[1 + 2 + ... + (p - 1)]}{qa + d[1 + 2 + ... + (q - 1)]} = \frac{p^2}{q^2}$

2

2

...

$$\Rightarrow \frac{pa + \frac{p(p-1)}{2}d}{qa + \frac{q(q-1)}{2}d} = \frac{p^2}{q^2} \Rightarrow \frac{a + \left(\frac{p-1}{2}\right)d}{a + \left(\frac{q-1}{2}\right)d} = \frac{p}{q}$$

We have to find, $\frac{a_6}{a_{21}} = \frac{a+5d}{a+20d}$ Put $\frac{p-1}{2} = 5$ and $\frac{q-1}{2} = 20$ $\Rightarrow p = 11$ and $\Rightarrow q = 41$ $\frac{a+5d}{a+20d} = \frac{11}{41}$

...

....

24. Here, a = ₹ 200, d = ₹ 40
Saving in first two months = ₹ 400
Remained saving = 200 + 240 + 280 +
upto n terms

$$\Rightarrow \frac{n}{2} [400 + (n-1)40] = 11040 - 400$$

$$\Rightarrow 200n + 20n^2 - 20n = 10640$$

$$\Rightarrow 20n^2 + 180n - 10640 = 0$$

$$\Rightarrow n^2 + 9n - 532 = 0$$

$$\Rightarrow (n + 28) (n - 19) = 0$$

$$\Rightarrow n = 19$$

Number of months = 10 + 2 = 21

25.
$$\frac{1}{S_{1}S_{2}} + \frac{1}{S_{2}S_{3}} + \dots + \frac{1}{S_{100}S_{101}} = \frac{1}{6}$$

$$\Rightarrow \frac{1}{d} \left[\frac{S_{2} - S_{1}}{S_{1}S_{2}} + \frac{S_{3} - S_{2}}{S_{2}S_{3}} + \dots + \frac{S_{101} - S_{100}}{S_{100}} \right] = \frac{1}{6}$$

$$\dots [\because S_{2} - S_{1} = S_{3} - S_{2} = \dots = d]$$

$$\Rightarrow \frac{1}{d} \left[\frac{1}{S_{1}} - \frac{1}{S_{2}} + \frac{1}{S_{2}} - \frac{1}{S_{3}} + \dots + \frac{1}{S_{100}} - \frac{1}{S_{101}} \right] = \frac{1}{6}$$

$$\Rightarrow \frac{1}{d} \left[\frac{1}{S_{1}} - \frac{1}{S_{101}} \right] = \frac{1}{6} \Rightarrow \frac{1}{d} \left[\frac{1}{S_{1}} - \frac{1}{S_{100}} \right] = \frac{1}{6}$$

$$\Rightarrow \frac{1}{d} \left[\frac{100d}{S_{1} \cdot (S_{1} + 100d)} \right] = \frac{1}{6}$$

$$\Rightarrow S_{1} \cdot (S_{1} + 100d) = 600 \qquad \dots (i)$$
Given, $S_{1} + S_{101} = 50$

$$\Rightarrow S_{1} + (S_{1} + 100d) = 50 \Rightarrow 2S_{1} + 100d = 50$$

$$\Rightarrow S_{1} + S0d = 25$$

$$\Rightarrow S_{1} = 25 - 50d \qquad \dots (i)$$
Putting (ii) in (i), we get
$$(25 - 50d) \cdot (25 + 50d) = 600$$

$$\Rightarrow d^{2} = \frac{1}{100} \Rightarrow d = \pm \frac{1}{10}$$

$$\begin{array}{ll} \vdots & [S_{1} - S_{101}] = [S_{1} - (S_{1} + 100d)] \\ = [-100d] = 100 |d| & \dots [\because |xy|| = |x|.|y|] \\ \vdots & [S_{1} - S_{101}] = 10 & \dots [\because |a = \pm 1/10] \\ \hline 26. & \text{Since, } a_{1} = 0 & \dots [\because |a = \pm 1/10] \\ \hline 26. & \text{Since, } a_{1} = 0 & \dots [\because |a = \pm 1/10] \\ \hline 26. & \frac{a_{2}}{a_{2}} = d_{a_{3}} = 2d, \dots \\ \vdots & \left(\frac{a_{3}}{a_{2}} + \frac{a_{4}}{a_{3}} + \dots + \frac{a_{n}}{a_{n-1}}\right) - a_{2}\left(\frac{1}{a_{2}} + \frac{1}{a_{3}} + \dots + \frac{1}{a_{n-2}}\right) \\ = \left(\frac{2d}{d} + \frac{3d}{2d} + \dots + \frac{(n-1)d}{(n-2)d}\right) \\ & -d\left(\frac{1}{d} + \frac{1}{2d} + \dots + \frac{1}{(n-3)d}\right) \\ = \left(\frac{2}{1} + \frac{3}{2} + \dots + \frac{n-1}{n-2}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-3}\right) \\ = \left[(1+1) + \left(1 + \frac{1}{2}\right) + \dots + \left(\frac{n-1}{n-2}\right)\right] \\ & -\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-3}\right) \\ = \left(n-3\right) + \frac{n-1}{n-2} = (n-3) + 1 + \frac{1}{n-2} \\ \hline DGT = (n-2) + \frac{1}{n-2} \\ \hline 27. & \text{Since, } a, 9, 3a - b \text{ and } 3a + b \text{ are in } A.P. \\ \vdots & 9 - a = (3a + b) - (3a - b) \\ \Rightarrow 9 - a = (3a + b) - (3a - b) \\ \Rightarrow 9 - a = 2b \Rightarrow a + 2b = 9 \quad \dots (i) \\ Also, 9 - a = (3a - b) - 9 \\ \Rightarrow 4a - b = 18 \qquad \dots (ii) \\ Eliminating b from (i) and (ii), we get \\ 4a - 18 = (9 - a)/2 \\ \Rightarrow 8a - 36 = 9 - a \Rightarrow 9a = 45 \Rightarrow a = 5 \\ \text{ So, first 2 terms of the A.P. are 5 and 9 \\ \text{ So, } a = 5, d = 4 \\ \therefore 2011^{th} term = a + 2010d \\ = 5 + 2010 \times 4 = 8045 \\ \hline 28. & \text{ The sequence can be written as log a, (2 \log a - \log b), (3 \log a - 2 \log b), \dots which are in A.P. having common difference as log a - log b. \\ \hline 29. & \text{ According to the given condition, \\ 4500 = 150 \times 10 \\ & + \{148 + 146 + \dots \text{ upto n terms}\} \\ = 1500 + \frac{n}{2}(296 + (n-1)(-2)) \\ \Rightarrow n^{2} - 149n + 3000 = 0 \Rightarrow (n - 24)(n - 125) = 0 \\ \Rightarrow n = 24 \qquad \qquad \dots [\because n \neq 125] \\ \hline \end{array}$$

So, total time taken = 10 + 24 = 34 min.

- 12, 19, ..., 96 is the series of numbers which 30. are of two digits and leave remainder 5 when divided by 7.
 - Here, a = 12, d = 7Last term = 96
- $96 = 12 + (n-1)7 \Rightarrow n = 13$

$$\therefore \qquad \mathbf{S}_{13} = \frac{13}{2} [2(12) + (13 - 1)7] = 702$$

31. Let the first term be a and common difference be d. The last 3 terms are T_{23} , T_{22} and T_{21} . According to the given condition, $T_{21} + T_{22} + T_{23} = 261$ \Rightarrow (a + 20d) + (a + 21d) + (a + 22d) = 261 \Rightarrow 3a + 63d = 261(i) Also, sum of 3 middle terms = 141 \Rightarrow T₁₁ + T₁₂ + T₁₃ = 141 \Rightarrow (a + 10d) + (a + 11d) + (a + 12d) = 141 \Rightarrow 3a + 33d = 141(ii) Solving (i) and (ii), we get a = 3 $S_{1} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{5$

52.
$$S_1 = a_2 + a_4 + a_6 + a_8 + \dots + a_{100}$$

 $S_2 = a_1 + a_3 + a_5 + a_7 + \dots + a_{99}$
∴ $S_1 - S_2 = (a_2 - a_1) + (a_4 - a_3) + \dots + (a_{100} - a_{99})$
 $= d + d + \dots + d = 50d \implies d = \frac{S_1 - S_2}{50}$

- 33. According to the given condition, 100 (a + 99d) = 50(a + 49d) \Rightarrow 2a + 198d = a + 49d \Rightarrow a + 149d = 0
- $T_{150} = a + 149d = 0$

20

Let first term of G.P.= A and 34. common ratio = rWe know that n^{th} term of G.P. = Ar^{n-1} Now $t_4 = a = Ar^3$, $t_7 = b = Ar^6$ and $t_{10} = c = Ar^9$ Relation $b^2 = ac$ is true because $b^2 = (Ar^6)^2 = A^2r^{12}$ and $ac = (Ar^3)(Ar^9) = A^2r^{12}$ Alternate method : As we know, if p, q, r in A.P., then pth, qth, rth terms of a G.P. are always in G.P., therefore, a, b, c will be in G.P. i.e. $\mathbf{b}^2 = \mathbf{ac}$.

35. Given that x,
$$2x + 2$$
, $3x + 3$ are in G.P.
Therefore,
 $(2x + 2)^2 = x(3x + 3)$
 $\Rightarrow x^2 + 5x + 4 = 0$
 $\Rightarrow (x + 4)(x + 1) = 0$
 $\Rightarrow x = -1, -4$

Now, first term: a = xand second term: ar = 2(x + 1) $\Rightarrow r = \frac{2(x+1)}{x}$ then 4th term = ar³ = $x \left[\frac{2(x+1)}{x} \right]^{3}$ $=\frac{8}{r^2}(x+1)^3$ Putting, x = -4We get, $t_4 = \frac{8}{16}(-3)^3 = -\frac{27}{2} = -13.5$ 36. x, y, z are in G.P., then $y^2 = x.z$ Now $a^x = b^y = c^z = m$ $\Rightarrow x \log_e a = y \log_e b = z \log_e c = \log_e m$ $\Rightarrow x = \log_a m, y = \log_b m, z = \log_c m$ Again as x, y, z are in G.P., so $\frac{y}{x} = \frac{z}{y}$ $\Rightarrow \frac{\log_{b} m}{\log_{a} m} = \frac{\log_{c} m}{\log_{b} m}$ $\Rightarrow \log_b a = \log_c b$ $t_5 = ar^4 = \frac{1}{2}$ 37. and $t_9 = ar^8 = \frac{16}{243}$ (ii) Solving (i) and (ii), we get $r = \frac{2}{3}$ and $a = \frac{27}{16}$ Now 4th term = $ar^3 = \frac{3^3}{2^4} \cdot \frac{2^3}{2^3} = \frac{1}{2}$ Let first term and common ratio of G.P. are 38. respectively a and r, then under condition, $t_{n} = t_{n-1} + t_{n-2}$ $\Rightarrow ar^{n-1} = ar^{n-2} + ar^{n-3}$ $\Rightarrow ar^{n-1} = ar^{n-1}r^{-1} + ar^{n-1}r^{-2}$ $\Rightarrow 1 = \frac{1}{r} + \frac{1}{r^2}$ $\Rightarrow r^2 - r - 1 = 0$ $\Rightarrow \mathbf{r} = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$ Taking only (+) sign ($:: \tau > 1$) \therefore nth term of series = arⁿ⁻¹ = a(3)ⁿ⁻¹

39. = 486(i) and sum of n terms of series.

$$S_n = \frac{a(3^n - 1)}{3 - 1} = 728 (\because r > 1)$$

From (i),
$$a\left(\frac{3^{n}}{3}\right) = 486 \text{ or } a.3^{n} = 3 \times 486$$

= 1458
From (ii), $a.3^{n} - a = 728 \times 2$
or $a.3^{n} - a = 1456$
1458 - $a = 1456$
 $\Rightarrow a = 2$

....

40. Let G_1 , G_2 , G_3 , G_4 , G_5 be the G.M.'s are inserted between 486 and $\frac{2}{3}$. So total terms are 7. $t_n = ar^{n-1}$ $\Rightarrow \frac{2}{3} = 486(r)^6 \Rightarrow r = \frac{1}{3}$ Hence, 4th G.M. will be, $t_5 = ar^4$ $= 486(\frac{1}{3})^4$

= 6.

41. Since
$$n^{m} + 1$$
 divides $1 + n + n^{2} + \dots + n^{127}$
Therefore, $\frac{1 + n + n^{2} + \dots + n^{127}}{n^{m} + 1}$ is an integer
 $\Rightarrow \frac{1 - n^{128}}{1 - n} \times \frac{1}{n^{m} + 1}$ is an integer
 $\Rightarrow \frac{(1 - n^{64})(1 + n^{64})}{(1 - n)(n^{m} + 1)}$
is an integer, when largest m = 64.
42. $0.234 = \frac{234 - 2}{1 - 2} = \frac{232}{1 - 2}$

43.
$$3 + 3\alpha + 3\alpha^2 + 3\alpha^3 + \dots = \frac{45}{8}$$

 $\Rightarrow 3\left[\frac{1}{1-\alpha}\right] = \frac{45}{8} \Rightarrow 8 = 15(1-\alpha) \Rightarrow \alpha = \frac{7}{15}$

990

990

44. Since the series are in G.P., therefore $x = \frac{1}{1-a} \text{ and } y = \frac{1}{1-b}$ $\therefore \quad a = \frac{x-1}{x}, b = \frac{y-1}{y}$ $\therefore \quad 1 + ab + a^{2}b^{2} + \dots \infty$ $= \frac{1}{1-ab} = \frac{1}{1-\frac{x-1}{x}} \frac{y-1}{y} = \frac{xy}{x+y-1}$

$$45. \quad 0.423 = \frac{423 - 4}{990} = \frac{419}{990}$$

46.
$$y = x - x^{2} + x^{3} - x^{4} + \dots \infty$$

Then $xy = x^{2} - x^{3} + x^{4} - \dots \infty$
Adding, $y + xy = x + 0 + 0 \dots + 0$
 $\Rightarrow x - xy = y$
 $\Rightarrow x(1 - y) = y$
 $\Rightarrow x = \frac{y}{1 - y}$

Alternate method:

$$y = \frac{x}{1 - (-x)} \Rightarrow y = \frac{x}{1 + x}$$
$$\Rightarrow y + yx = x \Rightarrow x = \frac{y}{1 - y}$$

47. We have
$$\frac{a}{1-r} = x$$

and $\frac{a^2}{1-r^2} = \frac{a}{1-r} \cdot \frac{a}{1+r} = y$
 $\Rightarrow y = x \cdot \frac{a}{1+r} = x \frac{x(1-r)}{1+r}$
 $\Rightarrow \frac{y}{x^2} = \frac{1-r}{1+r} \Rightarrow \frac{x^2}{y} = \frac{1+r}{1-r}$
 $\Rightarrow \frac{x^2}{y}(1-r) = 1+r$
 $\Rightarrow r\left[1+\frac{x^2}{y}\right] = -1+\frac{x^2}{y}$
 $\Rightarrow r = \frac{x^2-y}{x^2+y}$

48. Let r be the common ratio of the G.P. Then

$$S = \frac{a}{1-r} \implies r = 1 - \frac{a}{S}$$

Now S_n = Sum of n terms
$$= a \left(\frac{1-r^{n}}{1-r}\right) = \frac{a}{1-r} (1-r^{n})$$
$$= S \left[1 - \left(1 - \frac{a}{S}\right)^{n}\right]$$

49.
$$0.14189189189....$$

= $0.14 + 0.00189 + 0.00000189 + ...$
= $\frac{14}{100} + 189 \left[\frac{1}{10^5} + \frac{1}{10^8} +\infty \right]$
= $\frac{7}{50} + 189 \left[\frac{\frac{1}{10^5}}{1 - \left(\frac{1}{10^3}\right)} \right]$

50

$$= \frac{7}{50} + 189 \left[\frac{1}{10^{3}} \times \frac{10^{3}}{999} \right]$$

$$= \frac{7}{50} + \frac{189}{999100} = \frac{7}{50} + \frac{7}{3700}$$

$$= \frac{7}{50} + \frac{7}{25 \times 148} = \frac{21}{148}$$
Alternate Method:

$$0.141^{169} = \frac{14175}{99900} = \frac{21}{148}$$
50. Clearly it is a infinite G.P. whose common ratio is 0.24.

$$\therefore S_{n} = \frac{a}{1-r} = \frac{5.05}{1-0.24} = 6.64474$$
51. Series 3 + 33 + 33 +, + n terms
Given series can be written as, $-\frac{1}{3}[9 + 99 + 999 +, + n terms]$

$$= \frac{1}{3}[(10 - 1) + (10^{2} - 1) + (10^{3} - 1) +, + n terms]$$

$$= \frac{1}{3}[10 + 10^{2} +, + n terms]$$

$$= \frac{1}{3}\frac{1}{10(1^{0^{n}} - 1)} - \frac{1}{3}n$$

$$= \frac{1}{3}\frac{1}{10^{1^{n^{1}}} - 9n - 10]$$
52.
$$\frac{ar^{n^{n}} - a}{2} = 364$$

$$\Rightarrow \frac{ar^{n^{2}} r - a}{2} = 364$$

$$\Rightarrow \frac{ar^{n^{2}} r - a}{2} = 364$$

$$\Rightarrow \frac{3 \times 223 - a}{2} = 364$$

$$\Rightarrow \frac{3 \times 233 - a}{2} = 364$$

$$\Rightarrow \frac{3 \times 239 - a}{10} = \sqrt{10} = \sqrt{1$$

60. The given series is a G.P. with
$$a = i, r = -i$$

 \therefore $S_{100} = \frac{i(1-i^{100})}{1+i}$
 $= \frac{i(1-(i^2)^{50})}{1+i}$
 $= \frac{i(1-1)}{1+i} = 0$
61. Let the G.P. be a, ar, ar², ar³,, ar⁴⁸, ar⁴⁹
i.e., a₁ = a, a₂ = ar, a₃ = ar², ..., a₄₉ = ar⁴⁸
and a₅₀ = ar⁴⁹

$$\frac{a_1 - a_3 + a_5 - \dots + a_{49}}{a_2 - a_4 + a_6 - \dots + a_{50}}$$

= $\frac{a - ar^2 + ar^4 - \dots + ar^{48}}{ar - ar^3 + ar^5 - \dots + ar^{49}}$
= $\frac{a(1 - (-r^2)^{25})}{\frac{1 - (-r^2)}{ar(1 - (-r^2)^{25})}}$
= $\frac{1}{r} = \frac{a}{ar} = \frac{a_1}{a_2}$

62. (32) (32)^{1/6}(32)^{1/36}∞ = (32)<sup>1+
$$\frac{1}{6}+\frac{1}{36}+...∞$$

= (32) ^{$\frac{1}{1-(1/6)}$} = (32) ^{$\frac{1}{5/6}$} = (32) ^{$\frac{6}{5}$}
= 2⁶ = 64</sup>

63. $1 + \sin x + \sin^2 x + \dots$ up to $\infty = 4 + 2\sqrt{3}$

$$\Rightarrow \frac{1}{1-\sin x} = 4 + 2\sqrt{3}$$

$$\Rightarrow 1 - \sin x = \frac{1}{2(2+\sqrt{3})}$$

$$\Rightarrow \sin x = \frac{4+2\sqrt{3}-1}{2(2+\sqrt{3})}$$

$$\Rightarrow \sin x = \frac{\sqrt{3}}{2}$$

$$\Rightarrow x = \frac{\pi}{3}, \frac{2\pi}{3}$$

Let the first four terms be a, -ar, ar

64. Let the first four terms be a, -ar, ar^2 , $-ar^3$, where r > 0, a > 0According to the given conditions, a - ar = 12 and $ar^2 - ar^3 = 48$ By solving, we get r = 2 (r > 0) So, a = -12 65. Let a - d, a, a + d be three numbers in A.P. a + d + a + a - d = 15 $\Rightarrow a = 5$ a - d + 1, a + 4, a + d + 19 are in G.P. \Rightarrow 6 - d, 9, 24 + d are in G.P. 81 = (6 - d)(24 + d) $\Rightarrow 81 = 144 + 6d - 24d - d^2$ $\Rightarrow d^2 + 18d - 63 = 0$ d = 3, -21the numbers are 2, 5, 8 and 26, 5, -16 *.*.. According to the given condition, 66. $\frac{a}{1-r} = \frac{4}{3}$ $\Rightarrow \frac{3}{4} \left(\frac{1}{1-r} \right) = \frac{4}{3} \Rightarrow r = 1 - \frac{9}{16} = \frac{7}{16}$ Let the G.P. be a, ar, ar^2 , ar^3 , ar^4 , ... 67. $t_2 + t_5 = ar + ar^4 = 216$ $\frac{t_4}{t_6} = \frac{ar^3}{ar^5} = \frac{1}{4}$ \Rightarrow r² = 4 \Rightarrow r = ± 2 For $\mathbf{r} = 2$, $a(2+2^4) = 216$ $\Rightarrow a(18) = 216$ $\Rightarrow a = \frac{216}{18} = 12$ For r = -2, $a(-2+2^4) = 216$ $\Rightarrow a(14) = 216$ $\Rightarrow a = \frac{216}{14} = \frac{108}{7}$... a = 12According to the given condition, 68. $\Rightarrow 4 \Rightarrow a = 4 - 4r$ \Rightarrow 4r = 4 - a Only option (D) satisfies this condition. Since, a, b, c are in G.P. 69. $b^2 = ac$. $\Rightarrow \log_{e}b^{2} = \log_{e}ac$ $\Rightarrow \log_{e}a - 2\log_{e}b + \log_{e}c = 0$ Given, $(\log_e a)x^2 - (2 \log_e b)x + \log_e c = 0$ Since, 1 satisfies this equation. Therefore, 1 is one root and other root say β . $1.\beta = \frac{\log_e \alpha}{\log_e a}$

$$\beta = \log_a c$$

52

Series, 2, $2\frac{1}{2}$, $3\frac{1}{2}$, are in H.P. 70. $\Rightarrow \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \dots$ will be in A.P. Now, first term $a = \frac{1}{2}$ and common difference $d = -\frac{1}{10}$ So, 5th term of the A.P. $=\frac{1}{2}+(5-1)\left(-\frac{1}{10}\right)=\frac{1}{10}$ Hence, 5th term in H.P. is 10. 71. Since $a_1, a_2, a_3, \ldots, a_n$ are in H.P Therefore $\frac{1}{a_1}$, $\frac{1}{a_2}$, $\frac{1}{a_2}$, \dots , $\frac{1}{a}$ will be in A.P. Which gives, $\frac{1}{a_1} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = \dots$ $=\frac{1}{a_{n}}-\frac{1}{a_{n-1}}=d$ $\Rightarrow \frac{a_1 - a_2}{a_1 a_2} = \frac{a_2 - a_3}{a_2 a_3} = \dots = \frac{a_{n-1} - a_n}{a_{n-1} a_n} = d$ \Rightarrow $\mathbf{a}_1 - \mathbf{a}_2 = \mathbf{d}\mathbf{a}_1\mathbf{a}_2, \ \mathbf{a}_2 - \mathbf{a}_3 = \mathbf{d}\mathbf{a}_2\mathbf{a}_3$ and $\mathbf{a}_{n-1} - \mathbf{a}_n = \mathbf{d}\mathbf{a}_{n-1}\mathbf{a}_n$ Adding these, we get $d(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n)$ $= (a_1 + a_2 + \dots + a_{n-1}) - (a_2 + a_3 + \dots + a_n)$ $= a_1 - a_n$ Also nth term of this A.P. is given by $\frac{\mathbf{l}}{\mathbf{a}} = \frac{1}{\mathbf{a}} + (\mathbf{n} - 1)\mathbf{d} \Rightarrow \mathbf{d} = \frac{\mathbf{a}_1 - \mathbf{a}_n}{\mathbf{a}_1 \mathbf{a}_n (\mathbf{n} - 1)}$ Substituting this value of d in (i) $(a_1 - a_n) = \frac{a_1 - a_n}{a_1 a_1 (n-1)} (a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n)$ $(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n) = a_1a_n(n-1)$ Here, 5th term of the corresponding 72. A.P. = a + 4d = 45.....(i) and 11th term of the corresponding -A.P. = a + 10d = 69.....(ii) From (i) and (ii), we get a = 29, d = 4Therefore, 16th term of the corresponding A.P. $= a + 15d = 29 + 15 \times 4 = 89$ Hence, 16^{th} term of the H.P. is $\frac{1}{80}$.

73. Let roots be α , β then $\alpha + \beta = -\frac{b}{a} = 10$ $\alpha\beta = \frac{c}{-} = 11$ H.M. = $\frac{2\alpha\beta}{\alpha+\beta} = \frac{11\times2}{10} = \frac{11}{5}$ We know that, $x_n = \frac{(n+1)ab}{na+b}$ 74. Sixth H.M. i.e. $x_6 = \frac{7.3.\left(\frac{6}{13}\right)}{\left(6.3+\frac{6}{13}\right)}$... $=\frac{126}{240}=\frac{63}{120}$ We have $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{2ab}{a+b}$ $\Rightarrow a^{n+2} + ab^{n+1} + ba^{n+1} + b^{n+2} = 2a^{n+1}b + 2b^{n+1}a$ 75. $\Rightarrow a^{n+1}(a-b) = b^{n+1}(a-b)$ or $\left(\frac{a}{b}\right)^{a+1} = (1) = \left(\frac{a}{b}\right)^{0}$ Hence, n = -1Given that A.M. = 8 and G.M. = 5, if α , β are 76. roots of quadratic equation, then quadratic equation is $x^2 - x(\alpha + \beta) + \alpha\beta = 0$ A.M. = $\frac{\alpha + \beta}{2} = 8 \Rightarrow \alpha + \beta = 16$ and G.M. = $\sqrt{\alpha\beta} = 5 \Rightarrow \alpha\beta = 25$ So the required quadratic equation will be $x^2 - 16x + 25 = 0.$ a,b,c are in H.P. \Rightarrow b = $\frac{2ac}{c}$ 77. By inspection, we get (A) False (B) False (C) False 78. Given $x_1.x_2.x_3....x_n = 1$ \therefore A.M. \geq G.M. $\left(\frac{x_1 + x_2 + x_3 + \dots + x_n}{n}\right) \ge (x_1 \cdot x_2 \cdot x_3 \dots x_n)^{\overline{n}}$ $=(1)^{n}$ $\therefore \quad x_1 + x_2 + x_3 + \dots + x_n \ge n$ $\therefore \quad x_1 + x_2 + x_3 + \dots + x_n \text{ can never be less than } n.$

53

79. As given
$$H = \frac{2pq}{p+q}$$

 $\therefore \quad \frac{H}{p} + \frac{H}{q} = \frac{2q}{p+q} + \frac{2p}{p+q} = \frac{2(p+q)}{p+q} = 2$
 $\Rightarrow \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{\sqrt{3}}{1} \Rightarrow \frac{a}{b} = \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\right)^2$
 $\Rightarrow \frac{a}{b} = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \text{ or } a : b = (2 + \sqrt{3}): (2 - \sqrt{3}).$
80. Let three members a, b and c in G.P., then
 $b^2 = ac$
 $\Rightarrow 2 \log_{a} b - \log_{a} a + \log_{a} c or$
 $\log_{a} b = \frac{\log_{a} a + \log_{a} c}{2}$
Thus, their logarithms are in A.P.
81. $x, 1, 2 \arctan in A.P.$, then $2 = x + 2 \dots (i)$
and $4 = x^2$
 $\frac{x + x^2}{x + x^2} = \frac{4}{2} \text{ or } \frac{2x + z}{x + x} = 4$
Hence, $x, 4, z$ will be in H.P.
82. Given that a, A_1, A_2, b are in A.P.
84. $x + y + z = 15$, if $9, x, y, z, a$ are in A.P.
85. If $\frac{x + y}{y}, \frac{y + z}{z} = \frac{5}{2}$, if $9, x, y, z, a$ are in H.P.
82. Given that a, A_1, A_2, b are in A.P.
83. Given that a, A_1, A_2, b are in A.P.
84. $x + y + z = 15$, if $9, x, y, z, a$ are in H.P.
85. If $\frac{x + y}{2}, y, \frac{y + z}{2}$ are in H.P., then
75. Therefore, $A_1 = \frac{a + A_2}{2}$, $A_2 = \frac{A_1 + b}{2}$
 $\Rightarrow A_1 + A_2 = \frac{1}{2} (a + b + A_1 + A_2)$
 $\Rightarrow \frac{1}{2} (A_1 + A_2) = \frac{1}{2} (a + b)$ or
 $A_1 + A_2 = a + b$
and $G, G_2, a = 2b, G_2 = ab$,
 $\Rightarrow G_1G_2^2 = abG_1G_2 \Rightarrow G_3 = ab$
 $Hence, $\frac{A_1 + A_2}{G_1G_2} = \frac{3}{ab}$
Trick: Let $a = 1, b = 2$,
then $A_1 + A_2 = 1 + 2 = 3$
and $G, G_2 = 2x + 1 = 2$
 $\therefore \quad \frac{A_1 + A_2}{G(G_2} = \frac{3}{2}$, which is given by (A).
 $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} - \frac{1}{2} - \sqrt{a})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} - \frac{1}{2} - \sqrt{a})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} - \frac{1}{2} - \sqrt{a})}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$
 $\Rightarrow \frac{(\sqrt{a} - \sqrt{b})^2}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$$

87. Sum of the roots of
$$x^2 - 2ax + b^2 = 0$$
 is 2a,
Therefore, $A = A.M$ of the roots $= \overline{a}$.
Product of the roots of $x^2 - 2bx + a^2 = 0$ is a^2 .
Therefore, G.M. of the roots is $G = a$
Thus, $A = G$
88. Let P_1, P_2, P_3 be
altitudes from P, Q and R
 $P_1 = c \sin Q = \lambda bc$,
 $P_2 = a \sin R = \lambda ca$,
 $P_3 = b \sin P = \lambda ab$
 $Q = \frac{p_1}{a} = \frac{sin Q}{b} = \frac{sin R}{c} = \lambda$
 $\Rightarrow P_1, P_2, P_3$ are in A.P.
 $\Rightarrow \lambda bc$, λca , λab are in A.P.
 $\Rightarrow bc$, ca , abc are in A.P.
 $\Rightarrow \frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c}$ are in A.P.
 $\Rightarrow \frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c}$ are in A.P.
 $\Rightarrow \frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c}$ are in A.P.
 \therefore
 $a, b, c are in H.P. i.e., sides of the triangle are
in H.P.
89. Let, the distance of school from home = d
and time taken are t_1 and t_2 .
 \therefore $t_1 = \frac{d}{x}$ and $t_2 = \frac{d}{y}$
Avg. velocity = $\frac{\text{Total distance}}{\text{Total time}}$
 $= \frac{2d}{\left(\frac{d}{x} + \frac{d}{y}\right)} = \frac{2xy}{x + y}$, which is the H.M. of
 $\frac{d}{(x + y)} = \frac{1}{(1 + \log x) + (1 + \log z)}$
 $\Rightarrow 1 + \log x, 1 + \log y, 1 + \log z$ are in A.P.
 $\Rightarrow \frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ are is H.P.
 $\frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{x + \log z}$ are is H.P.
 $\frac{1}{1 + \log x}, (x + z) + \log_x(x - 2y + z)$
 $= \log_x \{(x + z) + \log_x(x - 2y + z)\}$
 $= \log_x [(x + z)(x + z - \frac{4xz}{x + z})]$$

 $= \log_{e}[(x+z)^{2} - 4xz]$ $= \log_{e}(x-z)^{2}$ $= 2 \log_e(x-z)$ 2. Since, b^2 , a^2 , c^2 are in A.P. $a^2 - b^2 = c^2 - a^2$ $\Rightarrow (a-b) (a+b) = (c-a) (c+a)$ $\Rightarrow \frac{1}{b+c} - \frac{1}{a+b} = \frac{1}{c+a} - \frac{1}{b+c}$ $\Rightarrow \frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a}$ are in A.P. (a + b), (b + c), (c + a) are in H.P. 3. Since, H₁, H₂ are two harmonic means between a and b. $\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{b}$ are in A.P. We know that 2A = a + b and $G^2 = ab$ $2 \times \frac{1}{H_{1}} = \frac{1}{a} + \frac{1}{H_{2}}$ Similarly, $2 \times \frac{1}{H_2} = \frac{1}{b} + \frac{1}{H_1}$ 7 On adding and solving we get, $2\left(\frac{1}{H_{1}}+\frac{1}{H_{2}}\right)-\left(\frac{1}{H_{1}}+\frac{1}{H_{2}}\right)=\frac{1}{a}+\frac{1}{b}$ $\frac{1}{H_1} + \frac{1}{H_2} = \frac{a+b}{ab} = \frac{2A}{G^2}$ Given, a, b, c are in G.P. 4 $b^2 = ac$ $x = \frac{a+b}{2}, y = \frac{b+c}{2}$ $\frac{a}{x} + \frac{c}{v} = \frac{2a}{a+b} + \frac{2c}{b+c}$ $= \frac{2(ab+bc+2ca)}{ab+ac+b^2+bc}$ $= \frac{2(ab+bc+2ca)}{(ab+ac+ac+bc)}$ $\dots [:: b^2 = ac]$ = 2According to the given condition, 5.

$$\frac{\frac{x+y}{2}}{\sqrt{xy}} = \frac{p}{q}$$
$$\Rightarrow \frac{x+y}{2(\sqrt{xy})} = \frac{p}{q} \qquad \dots (i)$$

$$\Rightarrow \frac{x^{2} + y^{2} + 2xy}{4xy} = \frac{p^{2}}{q^{2}}$$

$$\Rightarrow \frac{x^{2} + y^{2} + 22xy - 4xy}{4xy} = \frac{p^{2} - q^{2}}{q^{2}}$$

$$\Rightarrow \frac{x + y^{2}}{4xy} = \frac{p^{2} - q^{2}}{q^{2}}$$

$$\Rightarrow \frac{x - y}{2\sqrt{xy}} = \frac{\sqrt{p^{2} - q^{2}}}{q}$$

$$\therefore \frac{x + y}{2\sqrt{xy}} = \frac{p}{\sqrt{p^{2} - q^{2}}} \Rightarrow \frac{x}{y} = \frac{p + \sqrt{p^{2} - q^{2}}}{p - \sqrt{p^{2} - q^{2}}}$$
96. Since, p, q, r are in G.P.

$$\Rightarrow tan^{-1} p, tan^{-1} q, tan^{-1} r are in A.P.$$

$$\Rightarrow tan^{-1} p, tan^{-1} q, tan^{-1} r are in A.P.$$

$$\Rightarrow tan^{-1} p, tan^{-1} r = 2 tan^{-1} q$$

$$\Rightarrow p + r = 2q$$

$$\Rightarrow p, q, r are in A.P.$$
Here, p, q, r are both in A.P. and G.P., which is possible only, if $p = q = r$.
97. Given numbers a and 2.
A.M. = $\frac{a + 2}{2}$ and G.M. = $\sqrt{2a}$
According to the given condition,
A.M. - G.M. = 1

$$\Rightarrow \frac{a + 2}{2} - \sqrt{2a} = 1$$

$$\Rightarrow \frac{a}{2} + 1 - 1 = \sqrt{2a}$$

$$\Rightarrow a = 0 \text{ or } 8$$
Since, $a \neq 0$

$$\therefore a = 8$$
98. Let a and b be two numbers.
Sum of n A.M.'s = n × single A.M.

$$\Rightarrow A_{1} + A_{2} = 2 \times \left(\frac{a + b}{2}\right) = a + b$$
Product of n G.M.'s = (Single G.M.)^{n}
$$\Rightarrow G_{1}.G_{2} = (\sqrt{ab})^{2} = ab$$

$$\Rightarrow \frac{1}{a}, \frac{1}{H_{1}}, \frac{1}{H_{2}}, \frac{1}{a} are in A.P.$$

$$\Rightarrow \frac{H_1H_2}{H_1 + H_2} = \frac{G_1G_2}{A_1 + A_2}$$

$$\Rightarrow \frac{G_1G_2}{H_1H_2} \times \frac{H_1 + H_2}{A_1 + A_2} = 1$$

Given, a, b, c are in G.P.

$$\Rightarrow \log_x a, \log_x b \log_x c \text{ are in A.P.}$$

$$\Rightarrow \frac{\log a}{\log x}, \frac{\log b}{\log x}, \frac{\log c}{\log x} \text{ are in A.P.}$$

$$\Rightarrow \frac{\log x}{\log a}, \frac{\log x}{\log b}, \frac{\log x}{\log c} \text{ are in H.P.}$$

i.e., $\log_a x$, $\log_b x$, $\log_c x$ are in H.P.

$$\log a' \log b' \log c$$
i.e., $\log_a x$, $\log_b x$, $\log_c x$ are in H.P.
100. $(y-x)$, $2(y-a)$, $(y-z)$ are in H.P.

$$\Rightarrow \frac{1}{y-x}, \frac{1}{2(y-a)}, \frac{1}{y-z} \text{ are in A.P.}$$

$$\Rightarrow \frac{1}{2(y-a)} - \frac{1}{(y-x)} = \frac{1}{(y-z)} - \frac{1}{2(y-a)}$$

$$\Rightarrow \frac{y-x-2y+2a}{y-x} = \frac{2y-2a-y+z}{y-z}$$

$$\Rightarrow \frac{-x-y+2a}{(y-x)} = \frac{y+z-2a}{(y-z)}$$

$$\Rightarrow \frac{(x-a)+(y-a)}{(y-a)} = \frac{(y-a)+(z-a)}{(y-a)-(z-a)}$$

$$\Rightarrow \frac{(x-a)+(y-a)}{(y-a)} = \frac{(y-a)+(z-a)}{(y-a)-(z-a)}$$

$$\Rightarrow \frac{(x-a)}{(y-a)} = \frac{(y-a)}{(z-a)}$$

$$\Rightarrow (x-a), (y-a), (z-a) \text{ are in G. P.}$$
101. Given, a, b, c are in A.P.

$$\Rightarrow 2b = a + c \Rightarrow b - c = a - b$$
Also, a^2, b^2, c^2 are in H.P.

$$\frac{1}{b^2} - \frac{1}{a^2} = \frac{1}{b^2} - \frac{1}{b^2c^2}$$

$$\Rightarrow (a-b) [c^2(a+b) - a^2(b+c)] = 0$$
....[∵ (b-c) = (a-b)]

$$\Rightarrow a = b \text{ or } c^2a + c^2b - a^2c = 0$$

$$\Rightarrow a(c-a) = b(a^2-c^2)$$

$$\Rightarrow ac = -b(c+a)$$

$$\Rightarrow -ac = b.2b$$

$$\Rightarrow b^2 = -\left(\frac{a}{2}\right)c$$

$$\therefore -\frac{a}{2}, b, c \text{ are in G.P.}$$

102. A.M.
$$\geq$$
 G.M.

$$\Rightarrow \frac{a_1 + a_2 + \dots + a_{n-1} + 2a_n}{n}$$

$$\geq (a_1, a_2, \dots, a_{n-1} 2a_n)^{\frac{1}{n}} \geq (2c)^{\frac{1}{n}}$$

$$\therefore Minimum value of
$$a_1 + a_2 + \dots + a_{n-1} + 2a_n = n(2c)^{\frac{1}{n}}$$
103. Let the positive numbers be a_1 and a_2 .

$$a_1, A, a_2, \dots, are in A.P. then A = \frac{a_1 + a_2}{2}$$
Also, $a_1, G, a_2, \dots, are in G.P.$

$$\therefore G = \sqrt{a_1a_2}$$

$$\frac{1}{a_1}, \frac{1}{H}, \frac{1}{a_2}, \dots, are in H.P.$$

$$\therefore G = \sqrt{a_1a_2}$$

$$\frac{1}{a_1} + \frac{1}{a_2} \Rightarrow H = \frac{2a_1a_2}{a_1 + a_2} \Rightarrow H = \frac{G^2}{A}$$
104. Let the two numbers be x, y .

$$\therefore x - y = 48 \qquad \dots(i)$$
and $\frac{x + y}{2} - \sqrt{xy} = 18$

$$\Rightarrow x + y - 2\sqrt{xy} = 36$$

$$\Rightarrow 48 + y + y - 2\sqrt{(48 + y)y} = 36 \dots [From (i)]$$

$$\Rightarrow 12 + 2y = 2\sqrt{y(48 + y)}$$

$$\Rightarrow 144 + 4y^2 + 48y = 4(48y + y^2)$$

$$\Rightarrow 36y = 36 \Rightarrow y = 1$$

$$\therefore x = 48 + 1 = 49$$
105. Since, a, b, c are in H.P.

$$\therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c} \Rightarrow b = \frac{2ac}{a + c}$$
Consider option (B),

$$\frac{1}{ca} = \frac{2(\frac{1}{bc}, \frac{1}{ab})}{\frac{1}{ab}c} = \frac{(\frac{2}{ab^2c})}{\frac{1}{ab^2c(a + c)}} = \frac{2}{b(a + c)}$$

$$\Rightarrow ca = \frac{b(a + c)}{2} \Rightarrow b = \frac{2ac}{a + c}$$

$$\therefore \frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab} \text{ are in H.P.}$$$$

106. G.M. of 1, 2, 2², 2³, ..., 2ⁿ
Here, no. of terms = (n + 1)
∴ G.M. = (1.2.2².2³....2ⁿ)¹(n+1)
=
$$(2^{0+1+2*...+n})^{\frac{1}{(n+1)}} = \left[2^{\frac{n(n+1)}{2}}\right]^{1/(n+1)}$$

∴ G.M. = $2^{\frac{n}{2}}$
107. $\frac{x^{n+1} + y^{n+1}}{x^n + y^n} = \sqrt{xy} \Rightarrow x^{n+1} + y^{n+1} = \sqrt{xy} (x^n + y^n)$
 $\Rightarrow x^{n+\frac{1}{2}} \left(x^{\frac{1}{2}} - y^{\frac{1}{2}}\right) = y^{n+\frac{1}{2}} \left(x^{\frac{1}{2}} - y^{\frac{1}{2}}\right)$
 $\Rightarrow \left(\frac{x}{y}\right)^{n+\frac{1}{2}} = 1 \Rightarrow n = -\frac{1}{2}$
108. Given, $\sqrt{ab} = 10$
 $\Rightarrow ab = 100$ and $\frac{2ab}{a+b} = 8$
 $\Rightarrow a + b = 25$
 $a = 5, b = 20$
109. $1^2 - 2^2 + 3^2 - 4^2 + + 11^2$
 $= (1^2 - 2^2) + (3^2 - 4^2) + + (9^2 - 10^2) + 11^2$
Now, $a^2 - b^2 = (a - b) (a + b)$
∴ $1^2 - 2^2 + 3^2 - 4^2 + + 11^2$
 $= (-1) (1 + 2 + 3 + + 9 + 10) + 11^2$
 $= (-1) [1 + 2 + 3 + + 9 + 10] + 11^2$
 $= (-1) .\frac{10 \times 11}{2} + 11^2 = 66$
110. $f(x) = x + \frac{1}{2} = \frac{2x + 1}{2}$
 $f(2x) = \frac{4x + 1}{2}$
 $f(2x) = \frac{4x + 1}{2}$
 $f(2x) = \frac{2f(x)f(4x)}{f(x) + f(4x)}$
 $\Rightarrow x = 0, \frac{1}{4}$
At $x = 0$, terms are equal, so only solution is $x = \frac{1}{4}$

x =

 $=\frac{\pi^4}{90}$

 $=\frac{\pi^4}{96}$

2

111. It is an arithmetico-geometric series
111. It is an arithmetico-geometric series
112.
$$S_n = \frac{a}{1-r} + \frac{dr}{(1-r)^2} = \frac{1}{1-\frac{1}{2}} + \frac{2x\frac{1}{2}}{(1-\frac{1}{2})^2}$$

 $= 2+4$
 $= 6$
113. $S_n = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$
Here, $a = 1, r = \frac{1}{5}, d = 3$
 $\therefore S_n = \frac{1}{1-\frac{1}{5}} + \frac{3x\frac{1}{5}}{(1-\frac{1}{5})^2} = \frac{35}{16}$
113. Let $S = 1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ to ∞
 $\Rightarrow (S - 1) - \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^4} + \frac{14}{3^4} + \dots$ to ∞
 $\Rightarrow (S - 1) - \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^4} + \frac{14}{3^4} + \dots$ to ∞
 $\Rightarrow (S - 1) - \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^4} + \frac{14}{3^4} + \dots$ to ∞
 $\Rightarrow \frac{2}{3}(S - 1) = \frac{2}{3} + \frac{4}{3^2} + \frac{10}{3^4} + \frac{11}{3^4} + \frac{1}{3^4} + \frac{$

120. Sum of cubes of 'n' natural number

$$= \frac{n^{2}(n+1)^{2}}{4}$$

$$= \frac{15^{2}(16)^{2}}{4}$$
= 14,400

121. Given series
$$\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots$$

So, nth term of series is given by

$$u_n = \frac{1+2+3+\dots+n}{n}$$
$$= \frac{\frac{1}{2}n(n+1)}{n}$$
$$= \frac{n+1}{2}$$

122. Here, t_n of the A.P. 1, 2, 3, = n and t_n of the A.P. 3, 5, 7, = 2n + 1 ∴ t_n of given series = $n(2n + 1)^2 = 4n^3 + 4n^2 + n$ Hence,

$$S = \sum_{1}^{20} t_{n}$$

= $4\sum_{1}^{20} n^{3} + 4\sum_{1}^{20} n^{2} + \sum_{1}^{20} n$
= $4 \cdot \frac{1}{4} 20^{2} \cdot 21^{2} + 4 \cdot \frac{1}{6} 20 \cdot 21 \cdot 41 + \frac{1}{2} 20 \cdot 21$
= 188090

123.
$$t_n = \frac{(2n+1)}{\frac{n(n+1)(2n+1)}{6}}$$

= $\frac{6}{n(n+1)}$
 $S_n = \Sigma(t_n)$
= $\Sigma 6 \left[\frac{1}{n} - \frac{1}{n+1}\right]$
= $6 \left[1 - \frac{1}{n+1}\right]$

 $\mathbf{S_n} = \frac{6n}{n+1}$

$$= (2 + 2^{2} + \dots + 2^{n}) - n$$

$$= 2^{n+1} - 2 - n$$
125. We have $S = 2 + 4 + 7 + 11 + 16 + \dots + t_{n}$
Again, $S = 2 + 4 + 7 + 11 + \dots + t_{n-1} + t_{n}$
Subtracting, we get
 $0 = 2 + \{2 + 3 + 4 + 5 + \dots + (t_{n} - t_{n-1})\} - t_{n}$
 $t_{n} = 2 + \frac{1}{2}(n - 1)\{(4 + (n - 2)1\})\}$
 $= \frac{1}{2}(n^{2} + n + 2)$
Now,
 $S = \Sigma t_{n} = \frac{1}{2}\Sigma(n^{2} + n + 2)$
 $= \frac{1}{2}(\Sigma n^{2} + \Sigma n + 2\Sigma 1)$
 $= \frac{1}{2}\{\frac{1}{6}n(n + 1)(2n + 1) + \frac{1}{2}n(n + 1) + 2n\}$
 $= \frac{1}{2}\{(n + 1)(2n + 1 + 3) + 12\}$
 $= \frac{n}{6}\{(n + 1)(n + 2) + 6\}$
 $= \frac{n}{6}(n^{2} + 3n + 8)$

 $= 2 - 1 + 2^2 - 1 + 2^3 - 1 + \dots + 2^n - 1$

124. $1+3+7+\ldots+t_n$

126. Let nth term of series is t_n, then

$$S_n = 12 + 16 + 24 + 40 + \dots + t_n$$

Again $S_n = 12 + 16 + 24 + \dots + t_n$
On subtraction
 $0 = (12 + 4 + 8 + 16 + \dots + upto n terms) - t_n$
 $\Rightarrow t_n = 12 + [4 + 8 + 16 + \dots + upto (n-1) terms]$
 $= 12 + \frac{4(2^{n-1} - 1)}{2 - 1}$
 $= 12 + \frac{4(2^{n-1} - 1)}{2 - 1}$
 $= 2^{n+1} + 8$
On putting $n = 1, 2, 3 \dots$
 $t_1 = 2^2 + 8, t_2 = 2^3 + 8, t_3 = 2^4 + 8 \dots$ etc.
 $S_n = t_1 + t_2 + t_3 + \dots + t_n$
 $= (2^2 + 2^3 + 2^4 + \dots upto n terms) + (8 + 8 + 8 + \dots upto n terms)$
 $= \frac{2^2(2^n - 1)}{2 - 1} + 8n$
 $= 4(2^n - 1) + 8n$

$$127. \text{ Let, } S = 2 + 7 + 14 + 23 + 34 + 4 + 54 + 16^{-1} + 16^$$

DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

n

n